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Abstract
A general scheme for analysing reductions of dispersionless integrable
hierarchies is presented. It is based on a method for determining the S-function
by means of a system of first-order differential equations. Compatibility
systems of nonlinear partial differential equations of Bourlet type characterizing
both reductions and hodograph solutions of the dKP hierarchy are obtained.
Wide classes of illustrative explicit examples are exhibited.

PACS numbers: 02.30.−f, 02.30.Jr, 02.40.−k
Mathematics Subject Classification: 58B20

1. Introduction

One of the most important problems in the theory of integrable hierarchies of nonlinear
evolution equations is the analysis of their reductions. Over the last decade this subject has
registered particularly increasing activity in connection with the hierarchies of dispersionless
integrable systems. These systems have important applications to several fields such as, for
instance, the dispersionless limit of solutions of integrable models on the zero-phase domains
[1, 2], the classification problem of topological field theory [3–5], the study of systems of
hydrodynamic type [6] or the theory of conformal maps [7–9]. Several strategies have been
proposed to deal with the solutions of dispersionless hierarchies. The use of reductions in this
context is a relevant step within the hodograph method of solution [6, 10, 11], which can be
conveniently illustrated when applied to the dispersionless KP (dKP) hierarchy [10–13]

∂z

∂tn
= {�n, z} �n := (zn)+ n � 1. (1)

Here z = z(p, t) is a function depending on a complex variable p and an infinite set of complex
time parameters t := (x := t1, t2, . . .), that admits an expansion

z = p +
∞∑
n=1

an(t)

pn
p → ∞ (2)
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{·, ·} is the Poisson bracket

{F1, F2} := ∂F1

∂p

∂F2

∂x
− ∂F1

∂x

∂F2

∂p

and �n = (zn)+ denotes the polynomial part of zn as a function of p

(z)+ = p (z2)+ = p2 + 2a1 (z3)+ = p3 + 3p a1 + 3a2

(z4)+ = p4 + 4p2a1 + 4p a2 + 6a2
1 + 4a3.

For n = 2, (1) leads to the Benney moment equations [13, 14]
∂an+1

∂t
+
∂an+2

∂x
+ nan

∂a1

∂x
= 0 t := −2t2 (3)

and the compatibility equations for (1)
∂�m

∂tn
− ∂�n

∂tm
+ {�m,�n} = 0 m �= n (4)

form a hierarchy of nonlinear partial differential equations. For instance, by setting
m = 3, n = 2 we get the dKP equation (Zabolotskaya–Khokhlov equation)

(ut + 3uux)x = 3
4uyy u := −a1 t := t3 y := t2 (5)

and for m = 4, n = 2 one gets

vx = 1
2uy

(
1
2vy + uux

)
y

= (
1
2ut + 3uuy + 2vux

)
x

(6)

with v := −a2, t := t4 and u and y are as in (5).
There are several well-known examples of explicit reductions of the dKP hierarchy in

which z = z(p, t) depends on t through only finitely many functions [3]. A scheme to deal
with general reductions, without requiring knowledge of the explicit form of z = z(p, t),
is given by Kodama and Gibbons in [10, 11, 6]. They define an N-reduction of the dKP
hierarchy as a function z = z(p,u) of the form (2), depending on t through N functions
u = (u1(t), . . . , uN(t)) satisfying a compatible system of hydrodynamic-type (HT) equations

∂u

∂tn
= An(u)

∂u

∂x
n > 1 (7)

such that z = z(p,u(t)) solves (1). Here An are N × N matrix functions depending on u
only. Furthermore, if A2 has N different eigenvalues and ui,x, i = 1, . . . , N, are independent,
the matrices An are necessarily given by the functions ∂�n

∂p
evaluated at p = A2/2. The

corresponding HT equations (7) turn out to be diagonalized by means of a set of Riemann
invariants provided by the turning points zi := z(pi(u),u) of the function z(p,u).

In [8, 9] Gibbons and Tsarev consider the N-reductions of the Benney moment
equations (3). They take the N first moments of z = z(p,u) as the functions u (ui :=
ai, i = 1, . . . , N), while the higher moments are assumed to be functions an = an(u),
n > N , of them. As a consequence (3) becomes an HT system for u (involving the function
aN+1(u)) and a over-determined system for the functions an(u), n > N . The compatibility
conditions of the latter reduce to a system of N(N − 1)/2 second-order differential equations
for aN+1(u), the solutions of which determine diagonalizable HT systems for u. Note that
these HT systems play the role of the n = 2 flows in (7) with a diagonalizable matrix A2. In
this sense the results of [8, 9] complement those of [6, 10, 11], so that the Gibbons–Tsarev
analysis applies to the general reduction problem of the dKP hierarchy.

The starting point of this work is the characterization of the reductions of the dKP hierarchy
in terms of systems of differential equations for p = p(z,u) of the form

∂p

∂ui
=

N∑
j=1

rij (u)

p − pj (u)
i = 1, . . . , N (8)
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satisfying the following compatibility conditions:

rik
∂pk

∂uj
− rjk

∂pk

∂ui
=
∑
l �=k

rjlrik − rilrjk

pk − pl
(9)

∂rik

∂uj
− ∂rjk

∂ui
= 2

∑
l �=k

rjkril − rikrjl

(pk − pl)2
.

This class includes, in particular, the standard reductions associated with functional constraints
for z = z(p,u) such as

(1) Gel’fand–Dikii reductions

zN+1 = pN+1 + u1p
N−1 + · · · + uN .

(2) Zakharov reductions

z = p +
M∑
i=1

hi

p − vi
.

(3) Kodama reductions

zN+1 = pN+1 + u1p
N−1 + · · · + uN +

v1

p − v0
+ · · · +

vM

(p − v0)M
.

The basic ingredient of our analysis is a method for characterizing the S-function for
the reductions (8) of the dKP hierarchy in terms of a system of differential equations. The
corresponding compatibility conditions together with (9) constitute a system of first-order
nonlinear differential equations of Bourlet type. It characterizes both the reductions and the
hodograph solutions of the dKP hierarchy.

2. Reductions of the dKP hierarchy

2.1. The S-function

From (4) it follows [13] that there exists a function S = S(z, t), such that

∂S(z)

∂tn
= �n(p, t) n � 1. (10)

This function is a basic object of the dKP theory and it will henceforth be referred to as the
S-function. Without loss of generality it can be assumed that S has an expansion

S(z, t) =
∑
n�1

zntn +
∑
n�1

Sn(t)

zn
z → ∞. (11)

If S satisfies (10) and (11), then by setting n = 1 in (10) one finds p as a function p = p(z, t)
of the form

p = z +
∑
n�1

bn(t)

zn
bn := ∂Sn

∂x
(12)

and it can be proved [13] that the inverted series determines a solution z = z(p, t) of the
dKP hierarchy. The conditions (10) which characterize an S-function constitute a system of
compatible Hamilton–Jacobi-type equations

∂S

∂tn
= �n

(
∂S

∂x
, t

)
n � 2
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which represents the semiclassical limit of the linear system for the wavefunction of the
standard KP hierarchy.

From (11) and (12) it is clear that a function S with an expansion of the form (11) satisfies
(10) if and only if the derivatives ∂S(z)

∂tn
, considered as power series of p, have no terms with

negative powers of p. In other words, the conditions (10) are equivalent to(
∂S(z)

∂tn

)
−

= 0 n � 1. (13)

Henceforth we will use S as a function of either z or p and will denote by S(z) or S( p)
the corresponding functions (S(z, t) = S(p(z, t), t)). Furthermore, we will denote by
S(p) = S+(p) + S−(p) the decomposition of S( p) in terms of positive and negative powers of
p. Obviously, from (11) and (12) we deduce

S+(p) =
∑
n�1

�ntn. (14)

Hence the conditions (13) for S can be rewritten in the following form(
∂S(p)

∂p

∂p

∂tn
+
∂S−(p)
∂tn

)
−

= 0 n � 1 (15)

which will be useful in what follows.

2.2. N-reductions

We will consider N-reductions of the dKP hierarchy determined by systems of equations for
p = p(z,u) of the form

∂p

∂ui
= Ri(p,u) i = 1, . . . , N (16)

or, equivalently, in terms of z = z(p,u)

∂z

∂ui
+ Ri(p,u)

∂z

∂p
= 0 i = 1, . . . , N. (17)

The following conditions for the functions Ri will be assumed:

(i) The functions Ri are rational functions of p which have singularities only at N simple
poles pi = pi(u), i = 1, . . . , N , and vanish at p = ∞. Therefore they can be expanded
as

Ri(p,u) =
N∑
j=1

rij (u)

p − pj(u)
. (18)

(ii) The functions Ri satisfy the compatibility conditions for (17)
∂Ri

∂uj
− ∂Rj

∂ui
+ Rj

∂Ri

∂p
− Ri

∂Rj

∂p
= 0 i �= j. (19)

We are going to prove that under these assumptions the solutions z = z(p,u) of (17) define
N-reductions of the dKP hierarchy. Our method consists in deriving hodograph relations
which determine a class of functions u = u(t) for which an S-function for z = z(p,u(t))
exists.

To this end let us consider the conditions (15) for S and assume that not only p(z, t) but
also S−(p) depends on t through the functions u = u(t). In this way, (15) holds if(

∂S(p)

∂p

∂p

∂ui
+
∂S−(p)
∂ui

)
−

= 0
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or, equivalently, from the reduction condition (16)(
∂S(p)

∂p
Ri +

∂S−(p)
∂ui

)
−

= 0. (20)

We will look for a S-function such that
∂S

∂p
(pi) = 0. (21)

Let us denote by E = E(p,u) any entire function in p satisfying

E(pi,u) = Fi(u) i = 1, . . . , N

where

Fi(u) := ∂S−
∂p

(pi). (22)

Then by decomposing

∂S

∂p
Ri +

∂S−
∂ui

=
(
∂S+

∂p
+ E

)
Ri +

(
∂S−
∂p

− E

)
Ri +

∂S−
∂ui

and by taking into account that according to our hypothesis((
∂S+

∂p
+ E

)
Ri

)
−

= 0

we conclude that (20) is equivalent to the following system of differential equations for S−
∂S−(p)
∂ui

+ Ri
∂S−(p)
∂p

= (ERi)−. (23)

We note that they imply

Res

(
Ri
∂S−
∂p

, pj

)
= Res((ERi)−, pj ) = Res(ERi, pj )

so that (22) is satisfied by the solutions of (23). Moreover, by using (19) one finds that the
compatibility conditions for (23) are

∂(ERi)−
∂uj

− ∂(ERj)−
∂ui

+ Rj
∂(ERi)−
∂p

− Ri
∂(ERj)−
∂p

= 0 i �= j. (24)

By taking into account that

(ERj)− =
N∑
k=1

rjkFk

p − pk

one sees that (24) represent a set of consistency conditions for the functions Fj .
To sum up, if the functions Ri(p,u) and Fi(u) (i = 1, . . . N) satisfy (19) and (24), a

solution z = z(p,u) of (17) of the form

z = p +
∑
n�1

an(u)

pn
(25)

determines an N-reduction of the dKP hierarchy. Indeed, from (14) and (25) we determine
S+(p) in terms of the coefficients an(u) and then, by using the conditions (21) as N implicit
equations

∂S+

∂p
(pi) + Fi(u) = 0
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or, equivalently
∞∑
n=1

vin(u)tn + Fi(u) = 0 vin := ∂�n

∂p
(pi) (26)

we characterize a class of functions u = u(t) for which z = z(p,u(t)) admits an S-function.
Observe that the series

S−(p) =
∑
n�1

Sn(u)

pn

can be recursively determined from (23). Consequently, z = z(p,u(t)) solves the equations
(1) of the dKP hierarchy. In view of the form of the implicit relations (26) these solutions will
henceforth be called hodograph solutions.

Obviously, the choice Fi ≡ 0, i = 1, . . . , N corresponds to S− ≡ 0 of (23). On the other
hand, if (Ri, Fi ), i = 1, . . . , N is a solution of the compatibility conditions (19) and (24) and
z = z(p,u) is the associated solution of (17), then, for every entire function P = P(z)

F̃ i := Fi +
∂P (z)+

∂p

∣∣∣
p=pi

(27)

is a new solution of (24). The proof of this property follows from the fact that (17) implies
∂P (z)

∂ui
+ Ri(p,u)

∂P (z)

∂p
= 0

so that
∂P (z)−
∂ui

+ Ri(p,u)
∂P (z)−
∂p

= −
(
∂P (z)+

∂p
Ri

)
−
.

Hence, if S− is the solution of (23) associated with Fi then S̃− := S− − P(z)− is the solution
of (23) associated with F̃ i . It is easy to see that the transformation (27) describes translational
symmetries of the implicit relations (26)

ũ(t) := u(t + c) (28)

where c := (c1, c2, . . .) are the coefficients of the Taylor expansion of P

P(z) =
∑
n�0

cnz
n.

In [15–19] inverse problem techniques are used to construct the S-functions for solving
the initial value problem of several dispersionless models. Our analysis provides an alternative
viewpoint for determining S which is based on the systems of differential equations (16) and
(23). Thus, S is characterized by a set of spectral data{pi(u), rij (u), Fi(u) : 1 � i, j � N}.
Moreover, from (18) one finds that the compatibility conditions (19) and (24) are equivalent
to the following consistency conditions for the spectral data

rik
∂pk

∂uj
− rjk

∂pk

∂ui
=
∑
l �=k

rjlrik − rilrjk

pk − pl

∂rik

∂uj
− ∂rjk

∂ui
= 2

∑
l �=k

rjkril − rikrjl

(pk − pl)2
(29)

rik
∂Fk

∂uj
− rjk

∂Fk

∂ui
=
∑
l �=k

rjlrik − rilrjk

(pk − pl)2
(Fk − Fl)

where i �= j . In this way the first two groups of equations of the system (29) characterize
the reductions of the dKP hierarchy, while the whole system determines the set of hodograph
solutions.
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2.2.1. Differential form formulation of (29): compatibility. The equations (29) can be neatly
written in terms of differential forms. For that aim we introduce the following notation

#k :=
N∑
i=1

rik dui

so that (29) are equivalent to

d(pk#k) = #k ∧
∑
l �=k

pk + pl
(pk − pl)2

#l

d#k = 2#k ∧
∑
l �=k

1

(pk − pl)2
#l (30)

d(Fk#k) = #k ∧
∑
l �=k

Fk + Fl
(pk − pl)2

#l.

We shall show that for any solution {pk, Fk, #k} of (30) the following equations are satisfied

d


#k ∧

∑
l �=k

1

(pk − pl)2
#l


 = 0 (31)

d


#k ∧

∑
l �=k

pk + pl
(pk − pl)2

#l


 = 0 (32)

d


#k ∧

∑
l �=k

Fk + Fl
(pk − pl)2

#l


 = 0. (33)

It is enough to check (33), as (31) and (32) follow from it by choosing Fk = 1/2 and
Fk = pk , respectively. One easily gets the desired result as follows:

d


#k ∧

∑
l �=k

Fk + Fl
(pk − pl)2

#l


 = −2#k ∧

∑
l,m�=k

Sklm#l ∧ #m = 0.

The last equality is a consequence of the skew symmetry of the wedge product: #l ∧ #m =
−#m ∧ #l and symmetry of the coefficient

Sklm =
(
2p2

k + p2
m + p2

l − 2(pl + pm)pk
)
Fk

(−pl + pm)2(pk − pm)2(pk − pl)2
+

(
p2
k + 2p2

l + p2
m − 2plpk − 2plpm

)
Fl

(−pl + pm)2(pk − pm)2(pk − pl)2

+

(
p2
k + p2

l + 2p2
m − 2pkpm − 2plpm

)
Fm

(−pl + pm)2(pk − pm)2(pk − pl)2

given by Sklm = Skml .
The system (31)–(33) means that the system itself ensures the equality of cross-derivatives.

Thus, we conclude that the system (29) is compatible in the sense that
∂

∂um

∂pk

∂ul
= ∂

∂ul

∂pk

∂um
∂

∂um

∂rik

∂ul
= ∂

∂ul

∂rik

∂um
∂

∂um

∂Fk

∂ul
= ∂

∂ul

∂Fk

∂um

holds in virtue of the equations (29).
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2.2.2. Bourlet analysis. Our first aim is to show that (29) has a number of redundant
equations. We shall concentrate on the equations

rik
∂pk

∂uj
− rjk

∂pk

∂ui
=
∑
l �=k

rjlrik − rilrjk

pk − pl
(34)

rik
∂Fk

∂uj
− rjk

∂Fk

∂ui
=
∑
l �=k

rjlrik − rilrjk

(pk − pl)2
(Fk − Fl). (35)

For each k we define sk ∈ {1, . . . , N} by the condition rskk �= 0 and rik = 0 for i > sk . Then,
(34) imply

∂pk

∂ui
= 1

rskk


rik ∂pk

∂usk
−
∑
l �=k

rsklrik − rilrskk

pk − pl


 i �= sk. (36)

Moreover, (34) for i, j �= sk holds whenever (36) is satisfied:

rik
∂pk

∂uj
− rjk

∂pk

∂ui
= rik

rskk


rjk ∂pk

∂usk
−
∑
l �=k

rsklrjk − rjlrskk

pk − pl




− rjk

rskk


rik ∂pk

∂usk
−
∑
l �=k

rsklrik − rilrskk

pk − pl




=
∑
l �=k

rjlrik − rilrjk

pk − pl
.

Second, we notice that when rskk �= 0, (35) implies

∂Fk

∂ui
= 1

rskk


rik ∂Fk

∂usk
−
∑
l �=k

rsklrik − rilrskk

(pk − pl)2
(Fk − Fl)


 i �= sk. (37)

As before (35) for i, j �= sk holds whenever (37) is satisfied:

rik
∂Fk

∂uj
− rjk

∂Fk

∂ui
= rik

rskk


rjk ∂Fk

∂usk
−
∑
l �=k

rsklrjk − rjlrskk

(pk − pl)2
(Fk − Fl)




− rjk

rskk


rik ∂Fk

∂usk
−
∑
l �=k

rsklrik − rilrskk

(pk − pl)2
(Fk − Fl)




=
∑
l �=k

rjlrik − rilrjk

(pk − pl)2
(Fk − Fl).

Then, the system (29) is equivalent to

∂pk

∂ui
= 1

rskk


rik ∂pk

∂usk
−
∑
l �=k

rsklrik − rilrskk

pk − pl


 i < sk

∂pk

∂ui
= − 1

rskk

∑
l �=k

rskl rik − rilrskk

pk − pl
i > sk

∂Fk

∂ui
= 1

rskk


rik ∂Fk

∂usk
−
∑
l �=k

rsklrik − rilrskk

(pk − pl)2
(Fk − Fl)


 i < sk (38)



Hodograph solutions of the dispersionless KP hierarchy 409

∂Fk

∂ui
= − 1

rskk

∑
l �=k

rsklrik − rilrskk

(pk − pl)2
(Fk − Fl) i > sk

∂rik

∂uj
= ∂rjk

∂ui
+ 2

∑
l �=k

rjkril − rikrjl

(pk − pl)2
i > j

for k= 1, . . . , N . The system written in this form is of Bourlet type [21]. In this
sense

(
u1, . . . , usk−1, usk+1, uN−1

)
are principal variables for pk, Fk while usk are parametric

variables. For rik we have that (u1, . . . , ui−1) are principal variables and (ui, . . . , uN) are
parametric variables. The compatibility in principal variables is ensured from the result of
the previous section which gives compatibility among all variables. To apply the Bourlet
theorem we should check the analytic character of the functions defining the system. We
see that once the conditions rskk �= 0 and pk �= pl are ensured the analytic requirement
is satisfied. Following Bourlet, we conclude that there is a unique solution {pk, Fk, rik}
in a neighbourhood of an initial point u0 =

(
u
(0)
1 , . . . , u

(0)
N

)
such that when the principal

variables assume initial values then the solution is transformed into a set of arbitrary analytic
functions of the corresponding parametric variables. Thus, the general solution will depend on
N (N + 1) arbitrary analytic functions of the parametric variables, 3N of one variable, and for
each l = 2, . . . , N − 1 there are N analytical functions of l variables.

3. Hodograph solutions and systems of hydrodynamic type

3.1. Associated systems of hydrodynamic type

The implicit equations (26) are transformations of hodograph type which reveal the presence
of an underlying system of HT equations. In fact from (17), provided z = z(p,u) is regular
at the points pi , it follows that

∂z

∂p
(pi) = 0

so that (1) implies
N∑
j=1

∂zi

∂uj

∂uj

∂tn
= vin

N∑
j=1

∂zi

∂uj

∂uj

∂x
n � 1

where

zi := z(pi,u(t)).

Thus, by expressing u(t) in terms of the functions zi , we find that the functions u(t) satisfy
the system of equations of hydrodynamic type

∂u

∂tn
= An(u)

∂u

∂x
n = 1, . . . , N

u =



u1

...

uN


 An := K−1DnK (39)

Dn := diag(v1n, . . . , vNn) Kij := ∂zi

∂uj
.

Note that, by taking into account that v2i = 2pi , from (39) we obtain the Gibbons–Kodama
formula [6]

An = vn(A) A := A2/2 (40)
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where vn(p) := ∂�n
∂p

. This result shows the particular relevance of the n = 2 flow (Benney
moment equations) in the analysis of reductions of the dKP hierarchy. Furthermore, by using
the HT equation ut = A(u)ux associated with the Benney moment equations we may rewrite
(1) for n = 2 as∑

j

(∑
i

Aij
∂z

∂ui
− p

∂z

∂uj
+
∂z

∂p

∂a1

∂uj

)
∂uj

∂x
= 0.

Hence, if we assume that the functions ∂xuj , j = 1, . . . , N are independent, we conclude that
the functions Ri in (16) and (17) can be expressed as

Ri(p,u) =
N∑
j=1

(A(u)− p)−1
ji

∂a1

∂uj
(41)

Therefore, the compatibility condition (19) for the reductions of the dKP hierarchy can be
formulated in terms of the matrix A associated with the Benney system.

From (41) we deduce that

rik = −∂zk
∂ui

rk rk := ∂a1

∂zk
.

Thus, the differential forms #k are

#k = −
N∑
i=1

∂zk

∂ui

∂a1

∂zk
dui = −rk dzk.

In terms of the new coordinates {zi}Ni=1 the system (30) reads
∂ri

∂zj
= 2

rirj

(pj − pi)2

∂pi

∂zj
= rj

pj − pi

∂Fi

∂zj
= rj

Fj − Fi

(pj − pi)2
.

We note that according to (50)
∂Fi

∂zj

1

Fj − Fi
= ∂pi

∂zj

1

pj − pi
= 1

2

∂ ln ri
∂zj

i �= j. (42)

These relations provide a link between the system (29) and the theory of Comberscure
transformations of symmetric conjugate nets [22]. Thus, if we define

βij := 1√
ri

∂
√
rj

∂zi
=

√
rirj

(pi − pj )2
= βji i �= j (43)

then there exists a family of parallel conjugate nets x = x(u) given by the solutions of
∂x

∂zi
= HiX i (44)

whereHi and X i (the Lamé and renormalized tangent vectors, respectively) are characterized
by the equations

∂Hi

∂zi
= βjiHj (45)

and
∂Xi

∂zi
= βijXj . (46)

Obviously,Hi := √
ri solves (45) and as a consequence one proves that (42) means that FiHi

and piHi are also solutions of (45).
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3.2. Diagonal reductions

From (1) it follows that

∂zi

∂tn
= vin

∂zi

∂x
(47)

so that zi = zi(u) constitute a set of Riemann invariants of the HT system (39). If we take
z = (z1(u), . . . , zN (u)) as the new dependent variables of the N-reduction the associated HT
system is (47), so that the A-matrix for the Benney flow is Aij = piδij . Hence, by using (41)
we get that p = p(z,u(z)) satisfy

∂p

∂zi
= − ri

p − pi(z)
ri := ∂a1

∂zi
. (48)

These equations were already found by Gibbons–Tsarev [8, 9] in their analysis of the
consistency conditions of reductions of the Benney moment equations in characteristic form.

Reciprocally, if we consider the reductions determined by systems of the form

∂p

∂ui
= − ri

p − pi(u)
ri := ∂a1

∂ui
(49)

then

∂z

∂ui
= ri(u)

p − pi

∂z

∂p

so that zj (u) = z(pj ,u) satisfies

∂zj

∂ui
= 0 i �= j

and therefore each uj is a function of zj only. This means that the systems of the form (49)
determine those reductions of the dKP hierarchy in which u evolve according to diagonal HT
systems. Henceforth these reductions will be referred to as diagonal reductions. Since every
reduction is associated with an HT system which adopts a diagonal form under the change of
variables u → z, classifying diagonal reductions would allow us to classify the whole class
of reductions of the dKP hierarchy.

The compatibility conditions (29) for diagonal reductions and their corresponding
hodograph reductions read

∂ri

∂uj
= 2

rirj

(pj − pi)2

∂pi

∂uj
= rj

pj − pi
(50)

∂Fi

∂uj
= rj

Fj − Fi

(pj − pi)2

where i �= j .
This is a compatible system of first-order differential equations with a solution depending

on 3N arbitrary functions of one variable. The first two groups of equations were found by
Gibbons and Tsarev [7, 8] in their analysis of the reductions of the Benney equations. We also
remark that the geometrical interpretation described above obviously holds here as well.
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4. Examples

4.1. N = 1 reductions

If only one function u = u(t) is assumed to be involved in the reduction and it is set u = −a1,
then (16) becomes Abel’s equation

∂p

∂u
= 1

p − p1(u)
(51)

and from (17) we get the following recursion relation for the coefficients of the expansion of
z = z(p, u)

a1 = −u a2 = −
∫
p1(u) du

a′
m+2 = p1(u)a

′
m+1 +mam m � 1

where a′
m := ∂am

∂u
. We can now use this expansion to generate solutions of the equations of the

dKP hierarchy. For instance, by setting tn = 0, n > 4, in (26) we get the following implicit
equation for determining u

4

(
p1(u)

3 − 2up1(u)−
∫
p1(u) u

)
t4 + 3(p1(u)

2 − u)t3 + 2p1(u)t2 + x = −F(u) (52)

where p1(u) and F(u) are arbitrary functions. For t4 = 0 this result reduces to Kodama’s
equation [10, 11] for N = 1 reductions of the dispersionless KP equation (5).

An explicit expression for the solution z = z(p, u) of (17) is available in a few cases only.
For instance

1. p1(u) ≡ 0 (dKdV-reduction)

z = (p2 − 2u)
1
2 .

2. p1(u) = u
1
2

z =
(
p3 − 3up − 2u

3
2

) 1
3
.

3. p1(u) = u

z = 1 +W
(
ep−1(p − u− 1)

)
where W = W(y) (Lambert function) is the inverse function of y = x ex .

4. p1(u) = u2

z = 3

4i

(
ln

Ai(−)(p)− u ∂pAi(−)(p)
Ai(+)(p)− u ∂pAi(+)(p)

− i
π

2

)

where Ai(±) are the Airy functions

Ai(±)(p) := Bi(−p)± i Ai(−p).
In what concerns the determination of S− for p1 = 0 we have that (23) is now

∂S−(p)
∂u

+
1

p

∂S−(p)
∂p

= F

p
.

An explicit solution is given by

S−(p, u) = −
(∫ z(p,u)

0
F

(
1

2
(q2 − z(p, u)2)

)
dq

)
−
.
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4.2. N = 2 reductions

Let us consider now the case u = (u, v) with u = −a1. From (41) we get
∂p

∂u
= p − A22

(p − A11)(p − A22)− A12A21 (53)
∂p

∂v
= A12

(p − A11)(p − A22)− A12A21

where A := (Aij (u)) is the 2 × 2 matrix function associated with the Benney flow. The
right-hand sides of (53) have simple poles at

A± := 1
2

(
trA±

√
(trA)2 − 4 detA

)
.

In this case (19) leads to the following conditions:

∂vA11 = ∂uA12

(
∂v detA

−∂u(u + detA)

)
= A

(
∂v trA

−∂u trA

)
. (54)

The moments of z(p,u) are determined by the recursion relations

a1 = −u a2 = −
∫
A11 du +A12 dv

a3 =
∫
(detA− u− A11 trA) du− A12 trA dv

∂uam+2 = trA ∂uam+1 − detA ∂uam +mam − (m− 1)A22am−1

∂vam+2 = trA ∂vam+1 − detA ∂vam + (m− 1)A12am−1.

If we denote

F±(u) := ∂S−(p)
∂p

|A±

then (24) reduces to

(p − A22)∂v E − A12∂u E = (p2 − p trA− detA)∂v

(
F+ − F−
A+ − A−

)
where E is taken as

E := p
F+ − F−
A+ − A−

+
A+F− − A−F+

A+ − A−
.

Thus, one finds at once that(−∂v F
∂u F

)
= A

(
∂v G

−∂u G
)
. (55)

where

F := A−F+ − A+F−
A+ − A−

G := F− − F+

A+ − A−
.

Hence ifA andF± verify their corresponding consistency conditions and we set tn = 0, n > 4,
then a solution of the first flows of the dKP hierarchy can be found by solving the following
implicit equations for u:

4

(
A3

± − 2uA± −
∫
A11 u +A12 v

)
t4 + 3

(
A2

± − u
)
t3 + 2A±t2 + x = −F±. (56)

If t4 = 0 these equations are equivalent to the Kodama system for N = 2 reductions [10, 11]

−3(u + detA)t3 + x = F
(57)

3 trA t3 + 2t2 = G.
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A particularly interesting case arises by imposing u = −a1, v = −a2 which corresponds
to the choice

A =
(

0 1
−V W

)
V := A+A− W := A+ +A−.

Thus one finds that (54) becomes

∂vV + ∂uW = 0
(58)

∂uV − V ∂vW +W ∂vV + 1 = 0.

Hence by setting

V = ∂uZ W = −∂vZ
(58) can be formulated as a Monge–Ampere equation

∂uuZ + ∂uZ ∂vvZ − ∂vZ ∂uvZ + 1 = 0. (59)

Analogously, (55) can be written as

F = ∂uT G = ∂vT
(60)

∂uuT + V ∂vvT +W ∂uvT = 0.

Next, we will construct some solutions of the dKP equation.
A solution of (58) and (60) is given by

W = 2v

u
V = v2

u2
+ cu2 + u T = k1u + k2v

The corresponding hodograph solutions for (5) are given by

u(x, y, t) = 1

6ct

(
−6t +

√
36t2 + c

[
12t (x − k1)− (2y − k2)2

])

u(x, y, t) = 12t (x − k1)− (2y − k2)
2

72t2

which correspond to c �= 0 and c = 0, respectively.
Another interesting solution of (58) and (60) is

W = 2v

u
V = v2

u2
+ u T = k

v

u
.

It leads to a hodograph solution of (5) implicitly defined by the algebraic equation

72t2u3 + 4(y2 − 3tx)u2 = k2.

4.3. N = 3 reductions

Let us now denote u = (u, v,w) and consider the system

∂p

∂u
= p2 + B1p + B2

(p − A1)(p − A2)(p − A3)

∂p

∂v
= p + C1

(p − A1)(p − A2)(p − A3) (61)
∂p

∂w
= D1

(p − A1)(p − A2)(p − A3)
.
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As the computations in this case are very involved it is convenient to assume that (u, v,w)
are given by the first coefficients of the expansion of p = p(z,u)

p = z +
u

z
+
v

z2
+
w

z3
+O

(
1

z4

)
thus we have

B1 = C1 = −V B2 = R + u D1 = 1

where

V = A1 +A2 +A3

R = A1A2 +A2A3 + A3A1

H = A1A2A3.

The compatibility conditions (19) can be formulated as

Vv = −Rw
Rv = −Hw + RVw − VRw

Hv = 1 − VHw +HVw
(62)

Vu = Hw + uVw
Ru = VHw −HVw + uRw − 2

Hu = −V + RHw −HRw + uHw.

Now, if we take S = S+(p) and tn = 0, n > 4, then (21) implies

∂S+(p)

∂p
= 4t4(p − A1)(p − A2)(p − A3)

(63)= 4t4(p3 − Vp2 + Rp −H).

On the other hand, as a1 = −b1 = −u, a2 = −b2 = −v, we have
∂S+(p)

∂p
= x + 2py + 3(p2 − u)t + 4(p3 − 2up − v)t4. (64)

Thus, by comparing (63) and (64) we find that the solutions for the first two members of the
dKP hierarchy can be obtained by solving the system

V = − 3t

4t4
R = y

2t4
− 2u H = v − x − 3tu

4t4
. (65)

For instance, by trying a function V of the form V = V (u, v) we find a solution of (62)
given by

V = k1v + k2u + k3

R = k4 + (k2k3 − 2)u + 1
2

(
k2

2 − k1
)
u2 + (k1k3 − k2)v + 1

2k
3
1v

2 − k1w + k1k2uv

H = k5ek1u +

(
k2

2
− k3

2

2k1

)
u2 +

3k1k2 − k3
2 − k1k

2
2k3

k2
1

u− 1

2
k1k2v

2

+ (1 − k2k3)v + k2w − k2
2uv − k3

2

k3
1

− k2k4

k1
+
k3

k1
+

3k2

k2
1

− k2
2k3

k2
1

where k1, k2, k3, k4, k5 are arbitrary constants with k1 �= 0. Hence we have a solution of (5)
and (6) implicitly defined by the transcendent equation

k3
1x − 2k2

1k2y + 3k1k
2
2 t + 4

(
k2

1k3 + 3k1k2 − k3
2

)
t4 +

(
12k2

1k2t4 − 3k3
1 t
)
u + 4k3

1k5t4ek1u = 0
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and

v = −k3

k1
− 3t

4k1t4
− k2

k1
u.

In the particular case k5 = 0 one finds

u = k3
1x − 2k2

1k2y + 3k1k
2
2 t + 4

(
k2

1k3 + 3k1k2 − k3
2

)
t4

3k2
1(k1t − 4k2t4)

.

4.4. Diagonal reductions

We have seen above that the diagonal reductions

∂p

∂ui
= − ri

p − pi(u)
ri := ∂a1

∂ui

and their corresponding hodograph solutions are described by the compatible system of first-
order differential equations (50). In [8] Gibbons and Tsarev provide a set of solutions for the
first two subsystems of (50) which are both scaling and Galilean invariants. They are defined
by

2
∑
j �=i

uj − ui

(pj − pi)2
rj = 1 pi = ui +

∑
j �=i

uj − ui

pj − pi
rj . (66)

Corresponding solutions of the third subsystem of (50) satisfying the invariance properties∑
i

ui
∂Fj

∂ui
= Fj

∑
i

∂Fj

∂ui
= 1

are determined by

Fi = ui +
1

2

∑
j �=i
(uj − ui)(Fj − Fi)

∂ ln ri
∂uj

. (67)

Let us analyse the case N = 2 in closer detail. From (66) we may start with a scaling and
Galilean invariant choice for rj and pj

r1 = −r2 = 1
8 (u1 − u2)

p1 = 1
4 (3u1 + u2) p2 = 1

4 (u1 + 3u2).

The conditions for Fj become

∂F1

∂u2
= ∂F2

∂u1
= 1

2

F1 − F2

u1 − u2

which are equivalent to

Fi = ∂U

∂ui
i = 1, 2

2(u1 − u2)
∂2U

∂u1∂u2
= ∂U

∂u1
− ∂U

∂u2
.

The solution of the equation for U can be found by the method of separation of variables and
is a superposition of functions of the form

(a J0(k(u1 − u2)) + b Y0(k(u1 − u2))) (c cos(k(u1 + u2)) + d sin(k(u1 + u2)))

where J0 and Y0 are the standard Bessel functions. We find also the simple solution

U = c ln(u1 − u2) F1 = −F2 = c

u1 − u2
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which leads to the hodograph relations

3
(

1
16 (3u1 + u2)

2 + a1
)
t3 + 1

2 (3u1 + u2)t2 + x = c

u2 − u1

3
(

1
16 (u1 + 3u2)

2 + a1
)
t3 + 1

2 (u1 + 3u2)t2 + x = c

u1 − u2

where

a1 = 1
16 (u1 − u2)

2.
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G Álvarez Galindo for his help in computing the Airy potential function.

References

[1] Lax P D and Levermore C D 1983 Commun. Pure. Appl. Math. 36 253, 571, 809
[2] Tian Fei Ran 1993 Commun. Pure. Appl. Math. 46 1093
[3] Krichever I M 1992 Commun. Pure. Appl. Math. 47 437
[4] Krichever I M 1992 Commun. Math. Phys. 143 415
[5] Aoyama S and Kodama Y 1996 Commun. Math. Phys. 182 1185
[6] Kodama Y and Gibbons J 1989 Phys. Lett. A 135 167
[7] Mineev-Weinstein M, Wiegmann P B and Zabrodin A 2000 Phys. Rev. Lett. 84 5106
[8] Gibbons J and Tsarev S P 1996 Phys. Lett. A 211 19
[9] Gibbons J and Tsarev S P 1999 Phys. Lett. A 258 263

[10] Kodama Y 1988 Prog. Theor. Phys. Suppl. 95 184
[11] Kodama Y 1988 Phys. Lett. A 129 223
[12] Kupershmidt B A 1990 J. Phys. A: Math. Gen. 23 871
[13] Takasaky T and Takebe T 1992 Int. J. Mod. Phys. A 7 889

Takasaky T and Takebe T 1995 Rev. Math. Phys. 7 743
[14] Benney D J 1973 Stud. Appl. Math. 52 45
[15] Geogjaev V V 1985 Sov. Phys.–Dokl. 30 840
[16] Geogjaev V V 1994 The quasiclassical limit of the inverse scattering problem method Singular Limits of

Dispersive Waves (NATO ASI series B 320) ed N Ercolani et al (New York: Plenum) p 53
[17] Kodama Y and Gibbons J 1994 Solving dispersionless Lax equations Singular Limits of Dispersive Waves

(NATO ASI Series B 320) ed N Ercolani et al (New York: Plenum) p 61
[18] Kodama Y 1990 Phys. Lett. A 147 477
[19] Yu L 2000 J. Phys. A: Math. Gen. 33 8127
[20] Tsarev S P 1994 On the integrability of the averaged KdV and Benney equations Singular Limits of Dispersive

Waves (NATO ASI Series B 320) ed N Ercolani et al (New York: Plenum) p 112
[21] Bianchi L 1992 Lezioni di Geometria Differenziale 3rd edn (Bologna: Zanichelli)
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