Reductions and hodograph solutions of the dispersionless KP hierarchy

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2002 J. Phys. A: Math. Gen. 35401
(http://iopscience.iop.org/0305-4470/35/2/316)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.107
The article was downloaded on 02/06/2010 at 10:09

Please note that terms and conditions apply.

Reductions and hodograph solutions of the dispersionless KP hierarchy*

Manuel Mañas ${ }^{1}$, Luis Martínez Alonso ${ }^{1}$ and Elena Medina ${ }^{2}$
${ }^{1}$ Departamento de Física Teórica II, Universidad Complutense, E28040 Madrid, Spain
${ }^{2}$ Departamento de Matemáticas, Universidad de Cádiz, E11510 Puerto Real, Cádiz, Spain
E-mail: manuel@darboux.fis.ucm.es, luism@eucmos.sim.ucm.es and elena.medina@uca.es

Received 17 September 2001
Published 4 January 2002
Online at stacks.iop.org/JPhysA/35/401

Abstract

A general scheme for analysing reductions of dispersionless integrable hierarchies is presented. It is based on a method for determining the S-function by means of a system of first-order differential equations. Compatibility systems of nonlinear partial differential equations of Bourlet type characterizing both reductions and hodograph solutions of the dKP hierarchy are obtained. Wide classes of illustrative explicit examples are exhibited.

PACS numbers: 02.30.-f, 02.30.Jr, 02.40.-k
Mathematics Subject Classification: 58B20

1. Introduction

One of the most important problems in the theory of integrable hierarchies of nonlinear evolution equations is the analysis of their reductions. Over the last decade this subject has registered particularly increasing activity in connection with the hierarchies of dispersionless integrable systems. These systems have important applications to several fields such as, for instance, the dispersionless limit of solutions of integrable models on the zero-phase domains [1, 2], the classification problem of topological field theory [3-5], the study of systems of hydrodynamic type [6] or the theory of conformal maps [7-9]. Several strategies have been proposed to deal with the solutions of dispersionless hierarchies. The use of reductions in this context is a relevant step within the hodograph method of solution $[6,10,11]$, which can be conveniently illustrated when applied to the dispersionless KP (dKP) hierarchy [10-13]

$$
\begin{equation*}
\frac{\partial z}{\partial t_{n}}=\left\{\Omega_{n}, z\right\} \quad \Omega_{n}:=\left(z^{n}\right)_{+} \quad n \geqslant 1 . \tag{1}
\end{equation*}
$$

Here $z=z(p, t)$ is a function depending on a complex variable p and an infinite set of complex time parameters $\boldsymbol{t}:=\left(x:=t_{1}, t_{2}, \ldots\right)$, that admits an expansion

$$
\begin{equation*}
z=p+\sum_{n=1}^{\infty} \frac{a_{n}(\boldsymbol{t})}{p^{n}} \quad p \rightarrow \infty \tag{2}
\end{equation*}
$$

* Partially supported by CICYT proyecto PB98-0821.
$\{\cdot, \cdot\}$ is the Poisson bracket

$$
\left\{F_{1}, F_{2}\right\}:=\frac{\partial F_{1}}{\partial p} \frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial x} \frac{\partial F_{2}}{\partial p}
$$

and $\Omega_{n}=\left(z^{n}\right)_{+}$denotes the polynomial part of z^{n} as a function of p

$$
\begin{aligned}
& (z)_{+}=p \quad\left(z^{2}\right)_{+}=p^{2}+2 a_{1} \quad\left(z^{3}\right)_{+}=p^{3}+3 p a_{1}+3 a_{2} \\
& \left(z^{4}\right)_{+}=p^{4}+4 p^{2} a_{1}+4 p a_{2}+6 a_{1}^{2}+4 a_{3} .
\end{aligned}
$$

For $n=2$, (1) leads to the Benney moment equations [13, 14]

$$
\begin{equation*}
\frac{\partial a_{n+1}}{\partial t}+\frac{\partial a_{n+2}}{\partial x}+n a_{n} \frac{\partial a_{1}}{\partial x}=0 \quad t:=-2 t_{2} \tag{3}
\end{equation*}
$$

and the compatibility equations for (1)

$$
\begin{equation*}
\frac{\partial \Omega_{m}}{\partial t_{n}}-\frac{\partial \Omega_{n}}{\partial t_{m}}+\left\{\Omega_{m}, \Omega_{n}\right\}=0 \quad m \neq n \tag{4}
\end{equation*}
$$

form a hierarchy of nonlinear partial differential equations. For instance, by setting $m=3, n=2$ we get the dKP equation (Zabolotskaya-Khokhlov equation)

$$
\begin{equation*}
\left(u_{t}+3 u u_{x}\right)_{x}=\frac{3}{4} u_{y y} \quad u:=-a_{1} \quad t:=t_{3} \quad y:=t_{2} \tag{5}
\end{equation*}
$$

and for $m=4, n=2$ one gets

$$
\begin{equation*}
v_{x}=\frac{1}{2} u_{y} \quad\left(\frac{1}{2} v_{y}+u u_{x}\right)_{y}=\left(\frac{1}{2} u_{t}+3 u u_{y}+2 v u_{x}\right)_{x} \tag{6}
\end{equation*}
$$

with $v:=-a_{2}, t:=t_{4}$ and u and y are as in (5).
There are several well-known examples of explicit reductions of the dKP hierarchy in which $z=z(p, t)$ depends on t through only finitely many functions [3]. A scheme to deal with general reductions, without requiring knowledge of the explicit form of $z=z(p, \boldsymbol{t})$, is given by Kodama and Gibbons in $[10,11,6]$. They define an N-reduction of the dKP hierarchy as a function $z=z(p, \boldsymbol{u})$ of the form (2), depending on \boldsymbol{t} through N functions $\boldsymbol{u}=\left(u_{1}(\boldsymbol{t}), \ldots, u_{N}(\boldsymbol{t})\right)$ satisfying a compatible system of hydrodynamic-type (HT) equations

$$
\begin{equation*}
\frac{\partial \boldsymbol{u}}{\partial t_{n}}=A_{n}(\boldsymbol{u}) \frac{\partial \boldsymbol{u}}{\partial x} \quad n>1 \tag{7}
\end{equation*}
$$

such that $z=z(p, \boldsymbol{u}(\boldsymbol{t}))$ solves (1). Here A_{n} are $N \times N$ matrix functions depending on \boldsymbol{u} only. Furthermore, if A_{2} has N different eigenvalues and $u_{i, x}, i=1, \ldots, N$, are independent, the matrices A_{n} are necessarily given by the functions $\frac{\partial \Omega_{n}}{\partial p}$ evaluated at $p=A_{2} / 2$. The corresponding HT equations (7) turn out to be diagonalized by means of a set of Riemann invariants provided by the turning points $z_{i}:=z\left(p_{i}(\boldsymbol{u}), \boldsymbol{u}\right)$ of the function $z(p, \boldsymbol{u})$.

In [8, 9] Gibbons and Tsarev consider the N-reductions of the Benney moment equations (3). They take the N first moments of $z=z(p, \boldsymbol{u})$ as the functions $\boldsymbol{u}\left(u_{i}:=\right.$ $\left.a_{i}, i=1, \ldots, N\right)$, while the higher moments are assumed to be functions $a_{n}=a_{n}(\boldsymbol{u})$, $n>N$, of them. As a consequence (3) becomes an HT system for \boldsymbol{u} (involving the function $\left.a_{N+1}(\boldsymbol{u})\right)$ and a over-determined system for the functions $a_{n}(\boldsymbol{u}), n>N$. The compatibility conditions of the latter reduce to a system of $N(N-1) / 2$ second-order differential equations for $a_{N+1}(\boldsymbol{u})$, the solutions of which determine diagonalizable HT systems for \boldsymbol{u}. Note that these HT systems play the role of the $n=2$ flows in (7) with a diagonalizable matrix A_{2}. In this sense the results of $[8,9]$ complement those of $[6,10,11]$, so that the Gibbons-Tsarev analysis applies to the general reduction problem of the dKP hierarchy.

The starting point of this work is the characterization of the reductions of the dKP hierarchy in terms of systems of differential equations for $p=p(z, \boldsymbol{u})$ of the form

$$
\begin{equation*}
\frac{\partial p}{\partial u_{i}}=\sum_{j=1}^{N} \frac{r_{i j}(\boldsymbol{u})}{p-p_{j}(\boldsymbol{u})} \quad i=1, \ldots, N \tag{8}
\end{equation*}
$$

satisfying the following compatibility conditions:

$$
\begin{align*}
& r_{i k} \frac{\partial p_{k}}{\partial u_{j}}-r_{j k} \frac{\partial p_{k}}{\partial u_{i}}=\sum_{l \neq k} \frac{r_{j l} r_{i k}-r_{i l} r_{j k}}{p_{k}-p_{l}} \\
& \frac{\partial r_{i k}}{\partial u_{j}}-\frac{\partial r_{j k}}{\partial u_{i}}=2 \sum_{l \neq k} \frac{r_{j k} r_{i l}-r_{i k} r_{j l}}{\left(p_{k}-p_{l}\right)^{2}} . \tag{9}
\end{align*}
$$

This class includes, in particular, the standard reductions associated with functional constraints for $z=z(p, \boldsymbol{u})$ such as
(1) Gel'fand-Dikii reductions

$$
z^{N+1}=p^{N+1}+u_{1} p^{N-1}+\cdots+u_{N}
$$

(2) Zakharov reductions

$$
z=p+\sum_{i=1}^{M} \frac{h_{i}}{p-v_{i}} .
$$

(3) Kodama reductions

$$
z^{N+1}=p^{N+1}+u_{1} p^{N-1}+\cdots+u_{N}+\frac{v_{1}}{p-v_{0}}+\cdots+\frac{v_{M}}{\left(p-v_{0}\right)^{M}}
$$

The basic ingredient of our analysis is a method for characterizing the S-function for the reductions (8) of the dKP hierarchy in terms of a system of differential equations. The corresponding compatibility conditions together with (9) constitute a system of first-order nonlinear differential equations of Bourlet type. It characterizes both the reductions and the hodograph solutions of the dKP hierarchy.

2. Reductions of the dKP hierarchy

2.1. The S-function

From (4) it follows [13] that there exists a function $S=S(z, t)$, such that

$$
\begin{equation*}
\frac{\partial S(z)}{\partial t_{n}}=\Omega_{n}(p, t) \quad n \geqslant 1 . \tag{10}
\end{equation*}
$$

This function is a basic object of the dKP theory and it will henceforth be referred to as the S-function. Without loss of generality it can be assumed that S has an expansion

$$
\begin{equation*}
S(z, \boldsymbol{t})=\sum_{n \geqslant 1} z^{n} t_{n}+\sum_{n \geqslant 1} \frac{S_{n}(\boldsymbol{t})}{z^{n}} \quad z \rightarrow \infty \tag{11}
\end{equation*}
$$

If S satisfies (10) and (11), then by setting $n=1$ in (10) one finds p as a function $p=p(z, \boldsymbol{t})$ of the form

$$
\begin{equation*}
p=z+\sum_{n \geqslant 1} \frac{b_{n}(\boldsymbol{t})}{z^{n}} \quad b_{n}:=\frac{\partial S_{n}}{\partial x} \tag{12}
\end{equation*}
$$

and it can be proved [13] that the inverted series determines a solution $z=z(p, \boldsymbol{t})$ of the dKP hierarchy. The conditions (10) which characterize an S-function constitute a system of compatible Hamilton-Jacobi-type equations

$$
\frac{\partial S}{\partial t_{n}}=\Omega_{n}\left(\frac{\partial S}{\partial x}, t\right) \quad n \geqslant 2
$$

which represents the semiclassical limit of the linear system for the wavefunction of the standard KP hierarchy.

From (11) and (12) it is clear that a function S with an expansion of the form (11) satisfies (10) if and only if the derivatives $\frac{\partial S(z)}{\partial t_{n}}$, considered as power series of p, have no terms with negative powers of p. In other words, the conditions (10) are equivalent to

$$
\begin{equation*}
\left(\frac{\partial S(z)}{\partial t_{n}}\right)_{-}=0 \quad n \geqslant 1 \tag{13}
\end{equation*}
$$

Henceforth we will use S as a function of either z or p and will denote by $S(z)$ or $S(p)$ the corresponding functions $(S(z, t)=S(p(z, t), t))$. Furthermore, we will denote by $S(p)=S_{+}(p)+S_{-}(p)$ the decomposition of $S(p)$ in terms of positive and negative powers of p. Obviously, from (11) and (12) we deduce

$$
\begin{equation*}
S_{+}(p)=\sum_{n \geqslant 1} \Omega_{n} t_{n} . \tag{14}
\end{equation*}
$$

Hence the conditions (13) for S can be rewritten in the following form

$$
\begin{equation*}
\left(\frac{\partial S(p)}{\partial p} \frac{\partial p}{\partial t_{n}}+\frac{\partial S_{-}(p)}{\partial t_{n}}\right)_{-}=0 \quad n \geqslant 1 \tag{15}
\end{equation*}
$$

which will be useful in what follows.

2.2. N-reductions

We will consider N-reductions of the dKP hierarchy determined by systems of equations for $p=p(z, \boldsymbol{u})$ of the form

$$
\begin{equation*}
\frac{\partial p}{\partial u_{i}}=R_{i}(p, \boldsymbol{u}) \quad i=1, \ldots, N \tag{16}
\end{equation*}
$$

or, equivalently, in terms of $z=z(p, \boldsymbol{u})$

$$
\begin{equation*}
\frac{\partial z}{\partial u_{i}}+R_{i}(p, u) \frac{\partial z}{\partial p}=0 \quad i=1, \ldots, N . \tag{17}
\end{equation*}
$$

The following conditions for the functions R_{i} will be assumed:
(i) The functions R_{i} are rational functions of p which have singularities only at N simple poles $p_{i}=p_{i}(\boldsymbol{u}), i=1, \ldots, N$, and vanish at $p=\infty$. Therefore they can be expanded as

$$
\begin{equation*}
R_{i}(p, \boldsymbol{u})=\sum_{j=1}^{N} \frac{r_{i j}(\boldsymbol{u})}{p-p_{j}(\boldsymbol{u})} \tag{18}
\end{equation*}
$$

(ii) The functions R_{i} satisfy the compatibility conditions for (17)

$$
\begin{equation*}
\frac{\partial R_{i}}{\partial u_{j}}-\frac{\partial R_{j}}{\partial u_{i}}+R_{j} \frac{\partial R_{i}}{\partial p}-R_{i} \frac{\partial R_{j}}{\partial p}=0 \quad i \neq j \tag{19}
\end{equation*}
$$

We are going to prove that under these assumptions the solutions $z=z(p, \boldsymbol{u})$ of (17) define N-reductions of the dKP hierarchy. Our method consists in deriving hodograph relations which determine a class of functions $\boldsymbol{u}=\boldsymbol{u}(\boldsymbol{t})$ for which an S-function for $z=z(p, \boldsymbol{u}(\boldsymbol{t}))$ exists.

To this end let us consider the conditions (15) for S and assume that not only $p(z, \boldsymbol{t})$ but also $S_{-}(p)$ depends on \boldsymbol{t} through the functions $\boldsymbol{u}=\boldsymbol{u}(\boldsymbol{t})$. In this way, (15) holds if

$$
\left(\frac{\partial S(p)}{\partial p} \frac{\partial p}{\partial u_{i}}+\frac{\partial S_{-}(p)}{\partial u_{i}}\right)_{-}=0
$$

or, equivalently, from the reduction condition (16)

$$
\begin{equation*}
\left(\frac{\partial S(p)}{\partial p} R_{i}+\frac{\partial S_{-}(p)}{\partial u_{i}}\right)_{-}=0 \tag{20}
\end{equation*}
$$

We will look for a S-function such that

$$
\begin{equation*}
\frac{\partial S}{\partial p}\left(p_{i}\right)=0 \tag{21}
\end{equation*}
$$

Let us denote by $E=E(p, \boldsymbol{u})$ any entire function in p satisfying

$$
E\left(p_{i}, \boldsymbol{u}\right)=F_{i}(\boldsymbol{u}) \quad i=1, \ldots, N
$$

where

$$
\begin{equation*}
F_{i}(\boldsymbol{u}):=\frac{\partial S_{-}}{\partial p}\left(p_{i}\right) \tag{22}
\end{equation*}
$$

Then by decomposing

$$
\frac{\partial S}{\partial p} R_{i}+\frac{\partial S_{-}}{\partial u_{i}}=\left(\frac{\partial S_{+}}{\partial p}+E\right) R_{i}+\left(\frac{\partial S_{-}}{\partial p}-E\right) R_{i}+\frac{\partial S_{-}}{\partial u_{i}}
$$

and by taking into account that according to our hypothesis

$$
\left(\left(\frac{\partial S_{+}}{\partial p}+E\right) R_{i}\right)_{-}=0
$$

we conclude that (20) is equivalent to the following system of differential equations for S_{-}

$$
\begin{equation*}
\frac{\partial S_{-}(p)}{\partial u_{i}}+R_{i} \frac{\partial S_{-}(p)}{\partial p}=\left(E R_{i}\right)_{-} \tag{23}
\end{equation*}
$$

We note that they imply

$$
\operatorname{Res}\left(R_{i} \frac{\partial S_{-}}{\partial p}, p_{j}\right)=\operatorname{Res}\left(\left(E R_{i}\right)_{-}, p_{j}\right)=\operatorname{Res}\left(E R_{i}, p_{j}\right)
$$

so that (22) is satisfied by the solutions of (23). Moreover, by using (19) one finds that the compatibility conditions for (23) are

$$
\begin{equation*}
\frac{\partial\left(E R_{i}\right)_{-}}{\partial u_{j}}-\frac{\partial\left(E R_{j}\right)_{-}}{\partial u_{i}}+R_{j} \frac{\partial\left(E R_{i}\right)_{-}}{\partial p}-R_{i} \frac{\partial\left(E R_{j}\right)_{-}}{\partial p}=0 \quad i \neq j \tag{24}
\end{equation*}
$$

By taking into account that

$$
\left(E R_{j}\right)_{-}=\sum_{k=1}^{N} \frac{r_{j k} F_{k}}{p-p_{k}}
$$

one sees that (24) represent a set of consistency conditions for the functions F_{j}.
To sum up, if the functions $R_{i}(p, \boldsymbol{u})$ and $F_{i}(\boldsymbol{u})(i=1, \ldots N)$ satisfy (19) and (24), a solution $z=z(p, u)$ of (17) of the form

$$
\begin{equation*}
z=p+\sum_{n \geqslant 1} \frac{a_{n}(\boldsymbol{u})}{p^{n}} \tag{25}
\end{equation*}
$$

determines an N-reduction of the dKP hierarchy. Indeed, from (14) and (25) we determine $S_{+}(p)$ in terms of the coefficients $a_{n}(\boldsymbol{u})$ and then, by using the conditions (21) as N implicit equations

$$
\frac{\partial S_{+}}{\partial p}\left(p_{i}\right)+F_{i}(\boldsymbol{u})=0
$$

or, equivalently

$$
\begin{equation*}
\sum_{n=1}^{\infty} v_{i n}(\boldsymbol{u}) t_{n}+F_{i}(\boldsymbol{u})=0 \quad v_{i n}:=\frac{\partial \Omega_{n}}{\partial p}\left(p_{i}\right) \tag{26}
\end{equation*}
$$

we characterize a class of functions $\boldsymbol{u}=\boldsymbol{u}(\boldsymbol{t})$ for which $z=z(p, \boldsymbol{u}(\boldsymbol{t}))$ admits an S-function. Observe that the series

$$
S_{-}(p)=\sum_{n \geqslant 1} \frac{S_{n}(\boldsymbol{u})}{p^{n}}
$$

can be recursively determined from (23). Consequently, $z=z(p, \boldsymbol{u}(\boldsymbol{t}))$ solves the equations (1) of the dKP hierarchy. In view of the form of the implicit relations (26) these solutions will henceforth be called hodograph solutions.

Obviously, the choice $F_{i} \equiv 0, i=1, \ldots, N$ corresponds to $S_{-} \equiv 0$ of (23). On the other hand, if (R_{i}, F_{i}), $i=1, \ldots, N$ is a solution of the compatibility conditions (19) and (24) and $z=z(p, \boldsymbol{u})$ is the associated solution of (17), then, for every entire function $P=P(z)$

$$
\begin{equation*}
\tilde{F}_{i}:=F_{i}+\left.\frac{\partial P(z)_{+}}{\partial p}\right|_{p=p_{i}} \tag{27}
\end{equation*}
$$

is a new solution of (24). The proof of this property follows from the fact that (17) implies

$$
\frac{\partial P(z)}{\partial u_{i}}+R_{i}(p, \boldsymbol{u}) \frac{\partial P(z)}{\partial p}=0
$$

so that

$$
\frac{\partial P(z)_{-}}{\partial u_{i}}+R_{i}(p, \boldsymbol{u}) \frac{\partial P(z)_{-}}{\partial p}=-\left(\frac{\partial P(z)_{+}}{\partial p} R_{i}\right)_{-} .
$$

Hence, if S_{-}is the solution of (23) associated with F_{i} then $\tilde{S}_{-}:=S_{-}-P(z)_{-}$is the solution of (23) associated with \tilde{F}_{i}. It is easy to see that the transformation (27) describes translational symmetries of the implicit relations (26)

$$
\begin{equation*}
\tilde{u}(t):=u(t+c) \tag{28}
\end{equation*}
$$

where $\boldsymbol{c}:=\left(c_{1}, c_{2}, \ldots\right)$ are the coefficients of the Taylor expansion of P

$$
P(z)=\sum_{n \geqslant 0} c_{n} z^{n} .
$$

In [15-19] inverse problem techniques are used to construct the S-functions for solving the initial value problem of several dispersionless models. Our analysis provides an alternative viewpoint for determining S which is based on the systems of differential equations (16) and (23). Thus, S is characterized by a set of $\operatorname{spectral} \operatorname{data}\left\{p_{i}(\boldsymbol{u}), r_{i j}(\boldsymbol{u}), F_{i}(\boldsymbol{u}): 1 \leqslant i, j \leqslant N\right\}$. Moreover, from (18) one finds that the compatibility conditions (19) and (24) are equivalent to the following consistency conditions for the spectral data

$$
\begin{align*}
& r_{i k} \frac{\partial p_{k}}{\partial u_{j}}-r_{j k} \frac{\partial p_{k}}{\partial u_{i}}=\sum_{l \neq k} \frac{r_{j l} r_{i k}-r_{i l} r_{j k}}{p_{k}-p_{l}} \\
& \frac{\partial r_{i k}}{\partial u_{j}}-\frac{\partial r_{j k}}{\partial u_{i}}=2 \sum_{l \neq k} \frac{r_{j k} r_{i l}-r_{i k} r_{j l}}{\left(p_{k}-p_{l}\right)^{2}} \tag{29}\\
& r_{i k} \frac{\partial F_{k}}{\partial u_{j}}-r_{j k} \frac{\partial F_{k}}{\partial u_{i}}=\sum_{l \neq k} \frac{r_{j l} r_{i k}-r_{i l} r_{j k}}{\left(p_{k}-p_{l}\right)^{2}}\left(F_{k}-F_{l}\right)
\end{align*}
$$

where $i \neq j$. In this way the first two groups of equations of the system (29) characterize the reductions of the dKP hierarchy, while the whole system determines the set of hodograph solutions.
2.2.1. Differential form formulation of (29): compatibility. The equations (29) can be neatly written in terms of differential forms. For that aim we introduce the following notation

$$
\varrho_{k}:=\sum_{i=1}^{N} r_{i k} \mathrm{~d} u_{i}
$$

so that (29) are equivalent to

$$
\begin{align*}
& \mathrm{d}\left(p_{k} \varrho_{k}\right)=\varrho_{k} \wedge \sum_{l \neq k} \frac{p_{k}+p_{l}}{\left(p_{k}-p_{l}\right)^{2}} \varrho_{l} \\
& \mathrm{~d} \varrho_{k}=2 \varrho_{k} \wedge \sum_{l \neq k} \frac{1}{\left(p_{k}-p_{l}\right)^{2}} \varrho_{l} \tag{30}\\
& \mathrm{~d}\left(F_{k} \varrho_{k}\right)=\varrho_{k} \wedge \sum_{l \neq k} \frac{F_{k}+F_{l}}{\left(p_{k}-p_{l}\right)^{2}} \varrho_{l} .
\end{align*}
$$

We shall show that for any solution $\left\{p_{k}, F_{k}, \varrho_{k}\right\}$ of (30) the following equations are satisfied

$$
\begin{align*}
& \mathrm{d}\left(\varrho_{k} \wedge \sum_{l \neq k} \frac{1}{\left(p_{k}-p_{l}\right)^{2}} \varrho_{l}\right)=0 \tag{31}\\
& \mathrm{~d}\left(\varrho_{k} \wedge \sum_{l \neq k} \frac{p_{k}+p_{l}}{\left(p_{k}-p_{l}\right)^{2}} \varrho_{l}\right)=0 \tag{32}\\
& \mathrm{~d}\left(\varrho_{k} \wedge \sum_{l \neq k} \frac{F_{k}+F_{l}}{\left(p_{k}-p_{l}\right)^{2}} \varrho_{l}\right)=0 \tag{33}
\end{align*}
$$

It is enough to check (33), as (31) and (32) follow from it by choosing $F_{k}=1 / 2$ and $F_{k}=p_{k}$, respectively. One easily gets the desired result as follows:

$$
\mathrm{d}\left(\varrho_{k} \wedge \sum_{l \neq k} \frac{F_{k}+F_{l}}{\left(p_{k}-p_{l}\right)^{2}} \varrho_{l}\right)=-2 \varrho_{k} \wedge \sum_{l, m \neq k} S_{k l m} \varrho_{l} \wedge \varrho_{m}=0
$$

The last equality is a consequence of the skew symmetry of the wedge product: $\varrho_{l} \wedge \varrho_{m}=$ $-\varrho_{m} \wedge \varrho_{l}$ and symmetry of the coefficient

$$
\begin{aligned}
S_{k l m}= & \frac{\left(2 p_{k}^{2}+p_{m}^{2}+p_{l}^{2}-2\left(p_{l}+p_{m}\right) p_{k}\right) F_{k}}{\left(-p_{l}+p_{m}\right)^{2}\left(p_{k}-p_{m}\right)^{2}\left(p_{k}-p_{l}\right)^{2}}+\frac{\left(p_{k}^{2}+2 p_{l}^{2}+p_{m}^{2}-2 p_{l} p_{k}-2 p_{l} p_{m}\right) F_{l}}{\left(-p_{l}+p_{m}\right)^{2}\left(p_{k}-p_{m}\right)^{2}\left(p_{k}-p_{l}\right)^{2}} \\
& +\frac{\left(p_{k}^{2}+p_{l}^{2}+2 p_{m}^{2}-2 p_{k} p_{m}-2 p_{l} p_{m}\right) F_{m}}{\left(-p_{l}+p_{m}\right)^{2}\left(p_{k}-p_{m}\right)^{2}\left(p_{k}-p_{l}\right)^{2}}
\end{aligned}
$$

given by $S_{k l m}=S_{k m l}$.
The system (31)-(33) means that the system itself ensures the equality of cross-derivatives. Thus, we conclude that the system (29) is compatible in the sense that

$$
\begin{aligned}
& \frac{\partial}{\partial u_{m}} \frac{\partial p_{k}}{\partial u_{l}}=\frac{\partial}{\partial u_{l}} \frac{\partial p_{k}}{\partial u_{m}} \\
& \frac{\partial}{\partial u_{m}} \frac{\partial r_{i k}}{\partial u_{l}}=\frac{\partial}{\partial u_{l}} \frac{\partial r_{i k}}{\partial u_{m}} \\
& \frac{\partial}{\partial u_{m}} \frac{\partial F_{k}}{\partial u_{l}}=\frac{\partial}{\partial u_{l}} \frac{\partial F_{k}}{\partial u_{m}}
\end{aligned}
$$

holds in virtue of the equations (29).
2.2.2. Bourlet analysis. Our first aim is to show that (29) has a number of redundant equations. We shall concentrate on the equations

$$
\begin{align*}
& r_{i k} \frac{\partial p_{k}}{\partial u_{j}}-r_{j k} \frac{\partial p_{k}}{\partial u_{i}}=\sum_{l \neq k} \frac{r_{j l} r_{i k}-r_{i l} r_{j k}}{p_{k}-p_{l}} \tag{34}\\
& r_{i k} \frac{\partial F_{k}}{\partial u_{j}}-r_{j k} \frac{\partial F_{k}}{\partial u_{i}}=\sum_{l \neq k} \frac{r_{j l} r_{i k}-r_{i l} r_{j k}}{\left(p_{k}-p_{l}\right)^{2}}\left(F_{k}-F_{l}\right) . \tag{35}
\end{align*}
$$

For each k we define $s_{k} \in\{1, \ldots, N\}$ by the condition $r_{s_{k} k} \neq 0$ and $r_{i k}=0$ for $i>s_{k}$. Then, (34) imply

$$
\begin{equation*}
\frac{\partial p_{k}}{\partial u_{i}}=\frac{1}{r_{s_{k} k}}\left(r_{i k} \frac{\partial p_{k}}{\partial u_{s_{k}}}-\sum_{l \neq k} \frac{r_{s_{k}} r_{i k}-r_{i l} r_{s_{k} k}}{p_{k}-p_{l}}\right) \quad i \neq s_{k} \tag{36}
\end{equation*}
$$

Moreover, (34) for $i, j \neq s_{k}$ holds whenever (36) is satisfied:

$$
\begin{aligned}
r_{i k} \frac{\partial p_{k}}{\partial u_{j}}-r_{j k} \frac{\partial p_{k}}{\partial u_{i}} & =\frac{r_{i k}}{r_{s_{k} k}}\left(r_{j k} \frac{\partial p_{k}}{\partial u_{s_{k}}}-\sum_{l \neq k} \frac{r_{s_{k} l} r_{j k}-r_{j l} r_{s_{k} k}}{p_{k}-p_{l}}\right) \\
& -\frac{r_{j k}}{r_{s_{k} k}}\left(r_{i k} \frac{\partial p_{k}}{\partial u_{s_{k}}}-\sum_{l \neq k} \frac{r_{s_{k} l} r_{i k}-r_{i l} r_{s_{k} k}}{p_{k}-p_{l}}\right) \\
= & \sum_{l \neq k} \frac{r_{j l} r_{i k}-r_{i l} r_{j k}}{p_{k}-p_{l}}
\end{aligned}
$$

Second, we notice that when $r_{s_{k} k} \neq 0$, (35) implies

$$
\begin{equation*}
\frac{\partial F_{k}}{\partial u_{i}}=\frac{1}{r_{s_{k} k}}\left(r_{i k} \frac{\partial F_{k}}{\partial u_{s_{k}}}-\sum_{l \neq k} \frac{r_{s_{k}} r_{i k}-r_{i l} r_{s_{k} k}}{\left(p_{k}-p_{l}\right)^{2}}\left(F_{k}-F_{l}\right)\right) \quad i \neq s_{k} \tag{37}
\end{equation*}
$$

As before (35) for $i, j \neq s_{k}$ holds whenever (37) is satisfied:

$$
\begin{gathered}
r_{i k} \frac{\partial F_{k}}{\partial u_{j}}-r_{j k} \frac{\partial F_{k}}{\partial u_{i}}=\frac{r_{i k}}{r_{s_{k} k}}\left(r_{j k} \frac{\partial F_{k}}{\partial u_{s_{k}}}-\sum_{l \neq k} \frac{r_{s_{k}} r_{j k}-r_{j l} r_{s_{k} k}}{\left(p_{k}-p_{l}\right)^{2}}\left(F_{k}-F_{l}\right)\right) \\
-\frac{r_{j k}}{r_{s_{k} k}}\left(r_{i k} \frac{\partial F_{k}}{\partial u_{s_{k}}}-\sum_{l \neq k} \frac{r_{s_{k} l} r_{i k}-r_{i l} r_{s_{k} k}}{\left(p_{k}-p_{l}\right)^{2}}\left(F_{k}-F_{l}\right)\right) \\
=\sum_{l \neq k} \frac{r_{j l} r_{i k}-r_{i l} r_{j k}}{\left(p_{k}-p_{l}\right)^{2}}\left(F_{k}-F_{l}\right) .
\end{gathered}
$$

Then, the system (29) is equivalent to

$$
\begin{align*}
& \frac{\partial p_{k}}{\partial u_{i}}=\frac{1}{r_{s_{k} k}}\left(r_{i k} \frac{\partial p_{k}}{\partial u_{s_{k}}}-\sum_{l \neq k} \frac{r_{s_{k} l} r_{i k}-r_{i l} r_{s_{k} k}}{p_{k}-p_{l}}\right) \quad i<s_{k} \\
& \frac{\partial p_{k}}{\partial u_{i}}=-\frac{1}{r_{s_{k} k}} \sum_{l \neq k} \frac{r_{s_{k} l} r_{i k}-r_{i l} r_{s_{k} k}}{p_{k}-p_{l}} \quad i>s_{k} \\
& \frac{\partial F_{k}}{\partial u_{i}}=\frac{1}{r_{s_{k} k}}\left(r_{i k} \frac{\partial F_{k}}{\partial u_{s_{k}}}-\sum_{l \neq k} \frac{r_{s_{k} l} r_{i k}-r_{i l} r_{s_{k} k}}{\left(p_{k}-p_{l}\right)^{2}}\left(F_{k}-F_{l}\right)\right) \quad i<s_{k} \tag{38}
\end{align*}
$$

$$
\begin{aligned}
& \frac{\partial F_{k}}{\partial u_{i}}=-\frac{1}{r_{s_{k} k}} \sum_{l \neq k} \frac{r_{s_{k}} r_{i k}-r_{i l} r_{s_{k} k}}{\left(p_{k}-p_{l}\right)^{2}}\left(F_{k}-F_{l}\right) \quad i>s_{k} \\
& \frac{\partial r_{i k}}{\partial u_{j}}=\frac{\partial r_{j k}}{\partial u_{i}}+2 \sum_{l \neq k} \frac{r_{j k} r_{i l}-r_{i k} r_{j l}}{\left(p_{k}-p_{l}\right)^{2}} \quad i>j
\end{aligned}
$$

for $k=1, \ldots, N$. The system written in this form is of Bourlet type [21]. In this sense $\left(u_{1}, \ldots, u_{s_{k}-1}, u_{s_{k}+1}, u_{N-1}\right)$ are principal variables for p_{k}, F_{k} while $u_{s_{k}}$ are parametric variables. For $r_{i k}$ we have that $\left(u_{1}, \ldots, u_{i-1}\right)$ are principal variables and $\left(u_{i}, \ldots, u_{N}\right)$ are parametric variables. The compatibility in principal variables is ensured from the result of the previous section which gives compatibility among all variables. To apply the Bourlet theorem we should check the analytic character of the functions defining the system. We see that once the conditions $r_{s_{k} k} \neq 0$ and $p_{k} \neq p_{l}$ are ensured the analytic requirement is satisfied. Following Bourlet, we conclude that there is a unique solution $\left\{p_{k}, F_{k}, r_{i k}\right\}$ in a neighbourhood of an initial point $\boldsymbol{u}_{0}=\left(u_{1}^{(0)}, \ldots, u_{N}^{(0)}\right)$ such that when the principal variables assume initial values then the solution is transformed into a set of arbitrary analytic functions of the corresponding parametric variables. Thus, the general solution will depend on $N(N+1)$ arbitrary analytic functions of the parametric variables, $3 N$ of one variable, and for each $l=2, \ldots, N-1$ there are N analytical functions of l variables.

3. Hodograph solutions and systems of hydrodynamic type

3.1. Associated systems of hydrodynamic type

The implicit equations (26) are transformations of hodograph type which reveal the presence of an underlying system of HT equations. In fact from (17), provided $z=z(p, \boldsymbol{u})$ is regular at the points p_{i}, it follows that

$$
\frac{\partial z}{\partial p}\left(p_{i}\right)=0
$$

so that (1) implies

$$
\sum_{j=1}^{N} \frac{\partial z_{i}}{\partial u_{j}} \frac{\partial u_{j}}{\partial t_{n}}=v_{i n} \sum_{j=1}^{N} \frac{\partial z_{i}}{\partial u_{j}} \frac{\partial u_{j}}{\partial x} \quad n \geqslant 1
$$

where

$$
z_{i}:=z\left(p_{i}, \boldsymbol{u}(\boldsymbol{t})\right)
$$

Thus, by expressing $\boldsymbol{u}(\boldsymbol{t})$ in terms of the functions z_{i}, we find that the functions $\boldsymbol{u}(\boldsymbol{t})$ satisfy the system of equations of hydrodynamic type

$$
\begin{align*}
& \frac{\partial \boldsymbol{u}}{\partial t_{n}}=A_{n}(\boldsymbol{u}) \frac{\partial \boldsymbol{u}}{\partial x} \quad n=1, \ldots, N \\
& \boldsymbol{u}=\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{N}
\end{array}\right) \quad A_{n}:=K^{-1} D_{n} K \tag{39}\\
& D_{n}:=\operatorname{diag}\left(v_{1 n}, \ldots, v_{N n}\right) \quad K_{i j}:=\frac{\partial z_{i}}{\partial u_{j}}
\end{align*}
$$

Note that, by taking into account that $v_{2 i}=2 p_{i}$, from (39) we obtain the Gibbons-Kodama formula [6]

$$
\begin{equation*}
A_{n}=v_{n}(A) \quad A:=A_{2} / 2 \tag{40}
\end{equation*}
$$

where $v_{n}(p):=\frac{\partial \Omega_{n}}{\partial p}$. This result shows the particular relevance of the $n=2$ flow (Benney moment equations) in the analysis of reductions of the dKP hierarchy. Furthermore, by using the HT equation $\boldsymbol{u}_{t}=A(\boldsymbol{u}) \boldsymbol{u}_{x}$ associated with the Benney moment equations we may rewrite (1) for $n=2$ as

$$
\sum_{j}\left(\sum_{i} A_{i j} \frac{\partial z}{\partial u_{i}}-p \frac{\partial z}{\partial u_{j}}+\frac{\partial z}{\partial p} \frac{\partial a_{1}}{\partial u_{j}}\right) \frac{\partial u_{j}}{\partial x}=0
$$

Hence, if we assume that the functions $\partial_{x} u_{j}, j=1, \ldots, N$ are independent, we conclude that the functions R_{i} in (16) and (17) can be expressed as

$$
\begin{equation*}
R_{i}(p, \boldsymbol{u})=\sum_{j=1}^{N}(A(\boldsymbol{u})-p)_{j i}^{-1} \frac{\partial a_{1}}{\partial u_{j}} \tag{41}
\end{equation*}
$$

Therefore, the compatibility condition (19) for the reductions of the dKP hierarchy can be formulated in terms of the matrix A associated with the Benney system.

From (41) we deduce that

$$
r_{i k}=-\frac{\partial z_{k}}{\partial u_{i}} r_{k} \quad r_{k}:=\frac{\partial a_{1}}{\partial z_{k}}
$$

Thus, the differential forms ϱ_{k} are

$$
\varrho_{k}=-\sum_{i=1}^{N} \frac{\partial z_{k}}{\partial u_{i}} \frac{\partial a_{1}}{\partial z_{k}} \mathrm{~d} u_{i}=-r_{k} \mathrm{~d} z_{k}
$$

In terms of the new coordinates $\left\{z_{i}\right\}_{i=1}^{N}$ the system (30) reads

$$
\begin{aligned}
\frac{\partial r_{i}}{\partial z_{j}} & =2 \frac{r_{i} r_{j}}{\left(p_{j}-p_{i}\right)^{2}} \\
\frac{\partial p_{i}}{\partial z_{j}} & =\frac{r_{j}}{p_{j}-p_{i}} \\
\frac{\partial F_{i}}{\partial z_{j}} & =r_{j} \frac{F_{j}-F_{i}}{\left(p_{j}-p_{i}\right)^{2}} .
\end{aligned}
$$

We note that according to (50)

$$
\begin{equation*}
\frac{\partial F_{i}}{\partial z_{j}} \frac{1}{F_{j}-F_{i}}=\frac{\partial p_{i}}{\partial z_{j}} \frac{1}{p_{j}-p_{i}}=\frac{1}{2} \frac{\partial \ln r_{i}}{\partial z_{j}} \quad i \neq j \tag{42}
\end{equation*}
$$

These relations provide a link between the system (29) and the theory of Comberscure transformations of symmetric conjugate nets [22]. Thus, if we define

$$
\begin{equation*}
\beta_{i j}:=\frac{1}{\sqrt{r_{i}}} \frac{\partial \sqrt{r_{j}}}{\partial z_{i}}=\frac{\sqrt{r_{i} r_{j}}}{\left(p_{i}-p_{j}\right)^{2}}=\beta_{j i} \quad i \neq j \tag{43}
\end{equation*}
$$

then there exists a family of parallel conjugate nets $\boldsymbol{x}=\boldsymbol{x}(\boldsymbol{u})$ given by the solutions of

$$
\begin{equation*}
\frac{\partial \boldsymbol{x}}{\partial z_{i}}=H_{i} \boldsymbol{X}_{i} \tag{44}
\end{equation*}
$$

where H_{i} and \boldsymbol{X}_{i} (the Lamé and renormalized tangent vectors, respectively) are characterized by the equations

$$
\begin{equation*}
\frac{\partial H_{i}}{\partial z_{i}}=\beta_{j i} H_{j} \tag{45}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \boldsymbol{X}_{i}}{\partial z_{i}}=\beta_{i j} \boldsymbol{X}_{j} \tag{46}
\end{equation*}
$$

Obviously, $H_{i}:=\sqrt{r_{i}}$ solves (45) and as a consequence one proves that (42) means that $F_{i} H_{i}$ and $p_{i} H_{i}$ are also solutions of (45).

3.2. Diagonal reductions

From (1) it follows that

$$
\begin{equation*}
\frac{\partial z_{i}}{\partial t_{n}}=v_{i n} \frac{\partial z_{i}}{\partial x} \tag{47}
\end{equation*}
$$

so that $z_{i}=z_{i}(\boldsymbol{u})$ constitute a set of Riemann invariants of the HT system (39). If we take $\boldsymbol{z}=\left(z_{1}(\boldsymbol{u}), \ldots, z_{N}(\boldsymbol{u})\right)$ as the new dependent variables of the N-reduction the associated HT system is (47), so that the A-matrix for the Benney flow is $A_{i j}=p_{i} \delta_{i j}$. Hence, by using (41) we get that $p=p(z, \boldsymbol{u}(\boldsymbol{z}))$ satisfy

$$
\begin{equation*}
\frac{\partial p}{\partial z_{i}}=-\frac{r_{i}}{p-p_{i}(\boldsymbol{z})} \quad r_{i}:=\frac{\partial a_{1}}{\partial z_{i}} \tag{48}
\end{equation*}
$$

These equations were already found by Gibbons-Tsarev [8, 9] in their analysis of the consistency conditions of reductions of the Benney moment equations in characteristic form.

Reciprocally, if we consider the reductions determined by systems of the form

$$
\begin{equation*}
\frac{\partial p}{\partial u_{i}}=-\frac{r_{i}}{p-p_{i}(\boldsymbol{u})} \quad r_{i}:=\frac{\partial a_{1}}{\partial u_{i}} \tag{49}
\end{equation*}
$$

then

$$
\frac{\partial z}{\partial u_{i}}=\frac{r_{i}(\boldsymbol{u})}{p-p_{i}} \frac{\partial z}{\partial p}
$$

so that $z_{j}(\boldsymbol{u})=z\left(p_{j}, \boldsymbol{u}\right)$ satisfies

$$
\frac{\partial z_{j}}{\partial u_{i}}=0 \quad i \neq j
$$

and therefore each u_{j} is a function of z_{j} only. This means that the systems of the form (49) determine those reductions of the dKP hierarchy in which \boldsymbol{u} evolve according to diagonal HT systems. Henceforth these reductions will be referred to as diagonal reductions. Since every reduction is associated with an HT system which adopts a diagonal form under the change of variables $\boldsymbol{u} \rightarrow \boldsymbol{z}$, classifying diagonal reductions would allow us to classify the whole class of reductions of the dKP hierarchy.

The compatibility conditions (29) for diagonal reductions and their corresponding hodograph reductions read

$$
\begin{align*}
\frac{\partial r_{i}}{\partial u_{j}} & =2 \frac{r_{i} r_{j}}{\left(p_{j}-p_{i}\right)^{2}} \\
\frac{\partial p_{i}}{\partial u_{j}} & =\frac{r_{j}}{p_{j}-p_{i}} \tag{50}\\
\frac{\partial F_{i}}{\partial u_{j}} & =r_{j} \frac{F_{j}-F_{i}}{\left(p_{j}-p_{i}\right)^{2}}
\end{align*}
$$

where $i \neq j$.
This is a compatible system of first-order differential equations with a solution depending on 3 N arbitrary functions of one variable. The first two groups of equations were found by Gibbons and Tsarev [7, 8] in their analysis of the reductions of the Benney equations. We also remark that the geometrical interpretation described above obviously holds here as well.

4. Examples

4.1. $N=1$ reductions

If only one function $u=u(\boldsymbol{t})$ is assumed to be involved in the reduction and it is set $u=-a_{1}$, then (16) becomes Abel's equation

$$
\begin{equation*}
\frac{\partial p}{\partial u}=\frac{1}{p-p_{1}(u)} \tag{51}
\end{equation*}
$$

and from (17) we get the following recursion relation for the coefficients of the expansion of $z=z(p, u)$

$$
\begin{aligned}
& a_{1}=-u \quad a_{2}=-\int p_{1}(u) \mathrm{d} u \\
& a_{m+2}^{\prime}=p_{1}(u) a_{m+1}^{\prime}+m a_{m} \quad m \geqslant 1
\end{aligned}
$$

where $a_{m}^{\prime}:=\frac{\partial a_{m}}{\partial u}$. We can now use this expansion to generate solutions of the equations of the dKP hierarchy. For instance, by setting $t_{n}=0, n>4$, in (26) we get the following implicit equation for determining u
$4\left(p_{1}(u)^{3}-2 u p_{1}(u)-\int p_{1}(u) u\right) t_{4}+3\left(p_{1}(u)^{2}-u\right) t_{3}+2 p_{1}(u) t_{2}+x=-F(u)$
where $p_{1}(u)$ and $F(u)$ are arbitrary functions. For $t_{4}=0$ this result reduces to Kodama's equation $[10,11]$ for $N=1$ reductions of the dispersionless KP equation (5).

An explicit expression for the solution $z=z(p, u)$ of (17) is available in a few cases only. For instance

1. $p_{1}(u) \equiv 0$ (dKdV-reduction)

$$
z=\left(p^{2}-2 u\right)^{\frac{1}{2}}
$$

2. $p_{1}(u)=u^{\frac{1}{2}}$

$$
z=\left(p^{3}-3 u p-2 u^{\frac{3}{2}}\right)^{\frac{1}{3}} .
$$

3. $p_{1}(u)=u$

$$
z=1+W\left(\mathrm{e}^{p-1}(p-u-1)\right)
$$

where $W=W(y)$ (Lambert function) is the inverse function of $y=x \mathrm{e}^{x}$.
4. $p_{1}(u)=u^{2}$

$$
z=\frac{3}{4 \mathrm{i}}\left(\ln \frac{\mathrm{Ai}^{(-)}(p)-u \partial_{p} \mathrm{Ai}^{(-)}(p)}{\mathrm{Ai}^{(+)}(p)-u \partial_{p} \mathrm{Ai}^{(+)}(p)}-\mathrm{i} \frac{\pi}{2}\right)
$$

where $\mathrm{Ai}^{(\pm)}$are the Airy functions

$$
\mathrm{Ai}^{(\pm)}(p):=\mathrm{Bi}(-p) \pm \mathrm{i} \mathrm{Ai}(-p)
$$

In what concerns the determination of S_{-}for $p_{1}=0$ we have that (23) is now

$$
\frac{\partial S_{-}(p)}{\partial u}+\frac{1}{p} \frac{\partial S_{-}(p)}{\partial p}=\frac{F}{p}
$$

An explicit solution is given by

$$
S_{-}(p, u)=-\left(\int_{0}^{z(p, u)} F\left(\frac{1}{2}\left(q^{2}-z(p, u)^{2}\right)\right) \mathrm{d} q\right)_{-} .
$$

4.2. $N=2$ reductions

Let us consider now the case $\boldsymbol{u}=(u, v)$ with $u=-a_{1}$. From (41) we get

$$
\begin{align*}
& \frac{\partial p}{\partial u}=\frac{p-A_{22}}{\left(p-A_{11}\right)\left(p-A_{22}\right)-A_{12} A_{21}} \tag{53}\\
& \frac{\partial p}{\partial v}=\frac{A_{12}}{\left(p-A_{11}\right)\left(p-A_{22}\right)-A_{12} A_{21}}
\end{align*}
$$

where $A:=\left(A_{i j}(\boldsymbol{u})\right)$ is the 2×2 matrix function associated with the Benney flow. The right-hand sides of (53) have simple poles at

$$
A_{ \pm}:=\frac{1}{2}\left(\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}\right) .
$$

In this case (19) leads to the following conditions:

$$
\begin{equation*}
\partial_{v} A_{11}=\partial_{u} A_{12} \quad\binom{\partial_{v} \operatorname{det} A}{-\partial_{u}(u+\operatorname{det} A)}=A\binom{\partial_{v} \operatorname{tr} A}{-\partial_{u} \operatorname{tr} A} . \tag{54}
\end{equation*}
$$

The moments of $z(p, \boldsymbol{u})$ are determined by the recursion relations

$$
\begin{aligned}
& a_{1}=-u \quad a_{2}=-\int A_{11} \mathrm{~d} u+A_{12} \mathrm{~d} v \\
& a_{3}=\int\left(\operatorname{det} A-u-A_{11} \operatorname{tr} A\right) \mathrm{d} u-A_{12} \operatorname{tr} A \mathrm{~d} v \\
& \partial_{u} a_{m+2}=\operatorname{tr} A \partial_{u} a_{m+1}-\operatorname{det} A \partial_{u} a_{m}+m a_{m}-(m-1) A_{22} a_{m-1} \\
& \partial_{v} a_{m+2}=\operatorname{tr} A \partial_{v} a_{m+1}-\operatorname{det} A \partial_{v} a_{m}+(m-1) A_{12} a_{m-1} .
\end{aligned}
$$

If we denote

$$
F_{ \pm}(\boldsymbol{u}):=\left.\frac{\partial S_{-}(p)}{\partial p}\right|_{A_{ \pm}}
$$

then (24) reduces to

$$
\left(p-A_{22}\right) \partial_{v} E-A_{12} \partial_{u} E=\left(p^{2}-p \operatorname{tr} A-\operatorname{det} A\right) \partial_{v}\left(\frac{F_{+}-F_{-}}{A_{+}-A_{-}}\right)
$$

where E is taken as

$$
E:=p \frac{F_{+}-F_{-}}{A_{+}-A_{-}}+\frac{A_{+} F_{-}-A_{-} F_{+}}{A_{+}-A_{-}} .
$$

Thus, one finds at once that

$$
\left(\begin{array}{cc}
-\partial_{v} & F \tag{55}\\
\partial_{u} & F
\end{array}\right)=A\left(\begin{array}{cc}
\partial_{v} & G \\
-\partial_{u} & G
\end{array}\right) .
$$

where

$$
F:=\frac{A_{-} F_{+}-A_{+} F_{-}}{A_{+}-A_{-}} \quad G:=\frac{F_{-}-F_{+}}{A_{+}-A_{-}} .
$$

Hence if A and $F_{ \pm}$verify their corresponding consistency conditions and we set $t_{n}=0, n>4$, then a solution of the first flows of the dKP hierarchy can be found by solving the following implicit equations for \boldsymbol{u} :
$4\left(A_{ \pm}^{3}-2 u A_{ \pm}-\int A_{11} u+A_{12} v\right) t_{4}+3\left(A_{ \pm}^{2}-u\right) t_{3}+2 A_{ \pm} t_{2}+x=-F_{ \pm}$.
If $t_{4}=0$ these equations are equivalent to the Kodama system for $N=2$ reductions $[10,11]$

$$
\begin{align*}
& -3(u+\operatorname{det} A) t_{3}+x=F \\
& 3 \operatorname{tr} A t_{3}+2 t_{2}=G . \tag{57}
\end{align*}
$$

A particularly interesting case arises by imposing $u=-a_{1}, v=-a_{2}$ which corresponds to the choice

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-V & W
\end{array}\right) \quad V:=A_{+} A_{-} \quad W:=A_{+}+A_{-}
$$

Thus one finds that (54) becomes

$$
\begin{align*}
& \partial_{v} V+\partial_{u} W=0 \\
& \partial_{u} V-V \partial_{v} W+W \partial_{v} V+1=0 \tag{58}
\end{align*}
$$

Hence by setting

$$
V=\partial_{u} Z \quad W=-\partial_{v} Z
$$

(58) can be formulated as a Monge-Ampere equation

$$
\begin{equation*}
\partial_{u u} Z+\partial_{u} Z \partial_{v v} Z-\partial_{v} Z \partial_{u v} Z+1=0 . \tag{59}
\end{equation*}
$$

Analogously, (55) can be written as

$$
\begin{align*}
& F=\partial_{u} T \quad G=\partial_{v} T \tag{60}\\
& \partial_{u u} T+V \partial_{v v} T+W \partial_{u v} T=0
\end{align*}
$$

Next, we will construct some solutions of the dKP equation.
A solution of (58) and (60) is given by

$$
W=\frac{2 v}{u} \quad V=\frac{v^{2}}{u^{2}}+c u^{2}+u \quad T=k_{1} u+k_{2} v
$$

The corresponding hodograph solutions for (5) are given by

$$
\begin{aligned}
& u(x, y, t)=\frac{1}{6 c t}\left(-6 t+\sqrt{36 t^{2}+c\left[12 t\left(x-k_{1}\right)-\left(2 y-k_{2}\right)^{2}\right]}\right) \\
& u(x, y, t)=\frac{12 t\left(x-k_{1}\right)-\left(2 y-k_{2}\right)^{2}}{72 t^{2}}
\end{aligned}
$$

which correspond to $c \neq 0$ and $c=0$, respectively.
Another interesting solution of (58) and (60) is

$$
W=\frac{2 v}{u} \quad V=\frac{v^{2}}{u^{2}}+u \quad T=k \frac{v}{u} .
$$

It leads to a hodograph solution of (5) implicitly defined by the algebraic equation

$$
72 t^{2} u^{3}+4\left(y^{2}-3 t x\right) u^{2}=k^{2}
$$

4.3. $N=3$ reductions

Let us now denote $\boldsymbol{u}=(u, v, w)$ and consider the system

$$
\begin{align*}
& \frac{\partial p}{\partial u}=\frac{p^{2}+B_{1} p+B_{2}}{\left(p-A_{1}\right)\left(p-A_{2}\right)\left(p-A_{3}\right)} \\
& \frac{\partial p}{\partial v}=\frac{p+C_{1}}{\left(p-A_{1}\right)\left(p-A_{2}\right)\left(p-A_{3}\right)} \\
& \frac{\partial p}{\partial w}=\frac{D_{1}}{\left(p-A_{1}\right)\left(p-A_{2}\right)\left(p-A_{3}\right)} . \tag{61}
\end{align*}
$$

As the computations in this case are very involved it is convenient to assume that (u, v, w) are given by the first coefficients of the expansion of $p=p(z, \boldsymbol{u})$

$$
p=z+\frac{u}{z}+\frac{v}{z^{2}}+\frac{w}{z^{3}}+O\left(\frac{1}{z^{4}}\right)
$$

thus we have

$$
B_{1}=C_{1}=-V \quad B_{2}=R+u \quad D_{1}=1
$$

where

$$
\begin{aligned}
& V=A_{1}+A_{2}+A_{3} \\
& R=A_{1} A_{2}+A_{2} A_{3}+A_{3} A_{1} \\
& H=A_{1} A_{2} A_{3} .
\end{aligned}
$$

The compatibility conditions (19) can be formulated as

$$
\begin{align*}
V_{v} & =-R_{w} \\
R_{v} & =-H_{w}+R V_{w}-V R_{w} \\
H_{v} & =1-V H_{w}+H V_{w} \\
V_{u} & =H_{w}+u V_{w} \tag{62}\\
R_{u} & =V H_{w}-H V_{w}+u R_{w}-2 \\
H_{u} & =-V+R H_{w}-H R_{w}+u H_{w} .
\end{align*}
$$

Now, if we take $S=S_{+}(p)$ and $t_{n}=0, n>4$, then (21) implies

$$
\begin{align*}
\frac{\partial S_{+}(p)}{\partial p} & =4 t_{4}\left(p-A_{1}\right)\left(p-A_{2}\right)\left(p-A_{3}\right) \tag{63}\\
& =4 t_{4}\left(p^{3}-V p^{2}+R p-H\right)
\end{align*}
$$

On the other hand, as $a_{1}=-b_{1}=-u, a_{2}=-b_{2}=-v$, we have

$$
\begin{equation*}
\frac{\partial S_{+}(p)}{\partial p}=x+2 p y+3\left(p^{2}-u\right) t+4\left(p^{3}-2 u p-v\right) t_{4} . \tag{64}
\end{equation*}
$$

Thus, by comparing (63) and (64) we find that the solutions for the first two members of the dKP hierarchy can be obtained by solving the system

$$
\begin{equation*}
V=-\frac{3 t}{4 t_{4}} \quad R=\frac{y}{2 t_{4}}-2 u \quad H=v-\frac{x-3 t u}{4 t_{4}} . \tag{65}
\end{equation*}
$$

For instance, by trying a function V of the form $V=V(u, v)$ we find a solution of (62) given by
$V=k_{1} v+k_{2} u+k_{3}$
$R=k_{4}+\left(k_{2} k_{3}-2\right) u+\frac{1}{2}\left(k_{2}^{2}-k_{1}\right) u^{2}+\left(k_{1} k_{3}-k_{2}\right) v+\frac{1}{2} k_{1}^{3} v^{2}-k_{1} w+k_{1} k_{2} u v$
$H=k_{5} \mathrm{e}^{k_{1} u}+\left(\frac{k_{2}}{2}-\frac{k_{2}^{3}}{2 k_{1}}\right) u^{2}+\frac{3 k_{1} k_{2}-k_{2}^{3}-k_{1} k_{2}^{2} k_{3}}{k_{1}^{2}} u-\frac{1}{2} k_{1} k_{2} v^{2}$
$+\left(1-k_{2} k_{3}\right) v+k_{2} w-k_{2}^{2} u v-\frac{k_{2}^{3}}{k_{1}^{3}}-\frac{k_{2} k_{4}}{k_{1}}+\frac{k_{3}}{k_{1}}+\frac{3 k_{2}}{k_{1}^{2}}-\frac{k_{2}^{2} k_{3}}{k_{1}^{2}}$
where $k_{1}, k_{2}, k_{3}, k_{4}, k_{5}$ are arbitrary constants with $k_{1} \neq 0$. Hence we have a solution of (5) and (6) implicitly defined by the transcendent equation
$k_{1}^{3} x-2 k_{1}^{2} k_{2} y+3 k_{1} k_{2}^{2} t+4\left(k_{1}^{2} k_{3}+3 k_{1} k_{2}-k_{2}^{3}\right) t_{4}+\left(12 k_{1}^{2} k_{2} t_{4}-3 k_{1}^{3} t\right) u+4 k_{1}^{3} k_{5} t_{4} \mathrm{e}^{k_{1} u}=0$
and

$$
v=-\frac{k_{3}}{k_{1}}-\frac{3 t}{4 k_{1} t_{4}}-\frac{k_{2}}{k_{1}} u .
$$

In the particular case $k_{5}=0$ one finds

$$
u=\frac{k_{1}^{3} x-2 k_{1}^{2} k_{2} y+3 k_{1} k_{2}^{2} t+4\left(k_{1}^{2} k_{3}+3 k_{1} k_{2}-k_{2}^{3}\right) t_{4}}{3 k_{1}^{2}\left(k_{1} t-4 k_{2} t_{4}\right)} .
$$

4.4. Diagonal reductions

We have seen above that the diagonal reductions

$$
\frac{\partial p}{\partial u_{i}}=-\frac{r_{i}}{p-p_{i}(\boldsymbol{u})} \quad r_{i}:=\frac{\partial a_{1}}{\partial u_{i}}
$$

and their corresponding hodograph solutions are described by the compatible system of firstorder differential equations (50). In [8] Gibbons and Tsarev provide a set of solutions for the first two subsystems of (50) which are both scaling and Galilean invariants. They are defined by

$$
\begin{equation*}
2 \sum_{j \neq i} \frac{u_{j}-u_{i}}{\left(p_{j}-p_{i}\right)^{2}} r_{j}=1 \quad p_{i}=u_{i}+\sum_{j \neq i} \frac{u_{j}-u_{i}}{p_{j}-p_{i}} r_{j} . \tag{66}
\end{equation*}
$$

Corresponding solutions of the third subsystem of (50) satisfying the invariance properties

$$
\sum_{i} u_{i} \frac{\partial F_{j}}{\partial u_{i}}=F_{j} \quad \sum_{i} \frac{\partial F_{j}}{\partial u_{i}}=1
$$

are determined by

$$
\begin{equation*}
F_{i}=u_{i}+\frac{1}{2} \sum_{j \neq i}\left(u_{j}-u_{i}\right)\left(F_{j}-F_{i}\right) \frac{\partial \ln r_{i}}{\partial u_{j}} . \tag{67}
\end{equation*}
$$

Let us analyse the case $N=2$ in closer detail. From (66) we may start with a scaling and Galilean invariant choice for r_{j} and p_{j}

$$
\begin{aligned}
& r_{1}=-r_{2}=\frac{1}{8}\left(u_{1}-u_{2}\right) \\
& p_{1}=\frac{1}{4}\left(3 u_{1}+u_{2}\right) \quad p_{2}=\frac{1}{4}\left(u_{1}+3 u_{2}\right) .
\end{aligned}
$$

The conditions for F_{j} become

$$
\frac{\partial F_{1}}{\partial u_{2}}=\frac{\partial F_{2}}{\partial u_{1}}=\frac{1}{2} \frac{F_{1}-F_{2}}{u_{1}-u_{2}}
$$

which are equivalent to

$$
\begin{aligned}
& F_{i}=\frac{\partial U}{\partial u_{i}} \quad i=1,2 \\
& 2\left(u_{1}-u_{2}\right) \frac{\partial^{2} U}{\partial u_{1} \partial u_{2}}=\frac{\partial U}{\partial u_{1}}-\frac{\partial U}{\partial u_{2}} .
\end{aligned}
$$

The solution of the equation for U can be found by the method of separation of variables and is a superposition of functions of the form

$$
\left(a J_{0}\left(k\left(u_{1}-u_{2}\right)\right)+b Y_{0}\left(k\left(u_{1}-u_{2}\right)\right)\right)\left(c \cos \left(k\left(u_{1}+u_{2}\right)\right)+d \sin \left(k\left(u_{1}+u_{2}\right)\right)\right)
$$

where J_{0} and Y_{0} are the standard Bessel functions. We find also the simple solution

$$
U=c \ln \left(u_{1}-u_{2}\right) \quad F_{1}=-F_{2}=\frac{c}{u_{1}-u_{2}}
$$

which leads to the hodograph relations

$$
\begin{aligned}
& 3\left(\frac{1}{16}\left(3 u_{1}+u_{2}\right)^{2}+a_{1}\right) t_{3}+\frac{1}{2}\left(3 u_{1}+u_{2}\right) t_{2}+x=\frac{c}{u_{2}-u_{1}} \\
& 3\left(\frac{1}{16}\left(u_{1}+3 u_{2}\right)^{2}+a_{1}\right) t_{3}+\frac{1}{2}\left(u_{1}+3 u_{2}\right) t_{2}+x=\frac{c}{u_{1}-u_{2}}
\end{aligned}
$$

where

$$
a_{1}=\frac{1}{16}\left(u_{1}-u_{2}\right)^{2} .
$$

Acknowledgments

This work was completed during the stay of the authors at the Isaac Newton Institute for the Mathematical Sciences, Cambridge University. We would like to thank the organisers of the program Integrable Systems for the kind invitation. L Martínez Alonso is grateful to the Fundation Banco Bilbao Vizcaya Argentaria for its support. The authors also acknowledge G Álvarez Galindo for his help in computing the Airy potential function.

References

[1] Lax P D and Levermore C D 1983 Commun. Pure. Appl. Math. 36 253, 571, 809
[2] Tian Fei Ran 1993 Commun. Pure. Appl. Math. 461093
[3] Krichever I M 1992 Commun. Pure. Appl. Math. 47437
[4] Krichever I M 1992 Commun. Math. Phys. 143415
[5] Aoyama S and Kodama Y 1996 Commun. Math. Phys. 1821185
[6] Kodama Y and Gibbons J 1989 Phys. Lett. A 135167
[7] Mineev-Weinstein M, Wiegmann P B and Zabrodin A 2000 Phys. Rev. Lett. 845106
[8] Gibbons J and Tsarev S P 1996 Phys. Lett. A 21119
[9] Gibbons J and Tsarev S P 1999 Phys. Lett. A 258263
[10] Kodama Y 1988 Prog. Theor. Phys. Suppl. 95184
[11] Kodama Y 1988 Phys. Lett. A 129223
[12] Kupershmidt B A 1990 J. Phys. A: Math. Gen. 23871
[13] Takasaky T and Takebe T 1992 Int. J. Mod. Phys. A 7889
Takasaky T and Takebe T 1995 Rev. Math. Phys. 7743
[14] Benney D J 1973 Stud. Appl. Math. 5245
[15] Geogjaev V V 1985 Sov. Phys.-Dokl. 30840
[16] Geogjaev V V 1994 The quasiclassical limit of the inverse scattering problem method Singular Limits of Dispersive Waves (NATO ASI series B 320) ed N Ercolani et al (New York: Plenum) p 53
[17] Kodama Y and Gibbons J 1994 Solving dispersionless Lax equations Singular Limits of Dispersive Waves (NATO ASI Series B 320) ed N Ercolani et al (New York: Plenum) p 61
[18] Kodama Y 1990 Phys. Lett. A 147477
[19] Yu L 2000 J. Phys. A: Math. Gen. 338127
[20] Tsarev S P 1994 On the integrability of the averaged KdV and Benney equations Singular Limits of Dispersive Waves (NATO ASI Series B 320) ed N Ercolani et al (New York: Plenum) p 112
[21] Bianchi L 1992 Lezioni di Geometria Differenziale 3rd edn (Bologna: Zanichelli)
[22] Darboux G 1896 Leçons sur la Théorie Générale des Surfaces IV (Paris: Gauthier-Villars) (reprinted 1972 New York: Chelsea Publishing Company)

